Skip to main content
Log in

Analysis of interphase magnetoelectric coupling in Bi0.9La0.1FeO3–MgFe2O4 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroic materials have grabbed great attention of researchers due to their distinctive feature of magnetoelectric coupling with vast applicability in advanced multifunctional devices. To achieve considerable value of magnetoelectric coupling, the samples of La-doped BiFeO3 and MgFe2O4, which were initially synthesized via hydrothermal method, were then embedded into the (1–x)Bi0.9La0.1FeO3 + xMgFe2O4 composites using a ball-milling process. The presence of rhombohedrally distorted cubic perovskite structure of La-doped BiFeO3 having R3c space group symmetry and spinel cubic structure of MgFe2O4 with Fd-3m space group symmetry was confirmed using X-ray diffraction analysis. The microscopic images of the composite samples show a slight variation in grain size with least porosity observed for the composite of x = 0.5. The elemental mapping assured the presence of all elements in the prepared composites that were in accordance with the stoichiometric ratios. The ferroelectric analysis exposed that the x = 0.2 composition had shown the highest efficiency of 52% for energy storage devices. The linear magnetoelectric response of the composite samples along with small values of switching charge density observed at x = 0.3 inferred this particular composite quite preferable for data storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Data will be available on request.

References

  1. A. Das, S. Chatterjee, S. Bandyopadhyay, D. Das, Enhanced magnetoelectric properties of BiFeO3 on formation of BiFeO3/SrFe12O19 nanocomposites. J. Appl. Phys. 119, 234102 (2016)

    ADS  Google Scholar 

  2. J. Pal, S. Kumar, L. Singh, M. Singh, A. Singh, Detailed investigation on structural, dielectric, magnetic and magnetodielectric properties of BiFeO3-BaSrTiO3 solid solutions. J. Magn. Magn. Mater. 441, 339–347 (2017)

    ADS  Google Scholar 

  3. H. Yang, G. Zhang, Y. Lin, Enhanced electrical properties and observation of magnetoelectric effect in the BiFeO3–BaTiO3/CoFe2O4 laminate composites. Mater. Lett. 164, 388–392 (2016)

    Google Scholar 

  4. S.A. Solopan, O.I. V’yunov, A.G. Belous, A.I. Tovstolytkin, L.L. Kovalenko, Magnetoelectric effect in composite structures based on ferroelectric–ferromagnetic perovskites. J. Eur. Ceram. 30, 259–263 (2010)

    Google Scholar 

  5. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    ADS  Google Scholar 

  6. B. Abdulvakhidov, Z. Li, K. Abdulvakhidov, A. Soldatov, A. Nazarenko, B. Kulbuzhev, I. Mardasova, N. Lyanguzov, E. Sitalo, S. Sadykov, Study of the structural-phase state and physical properties of (1–x)(CoFe2O4)− x (PbTiO3) compositions. Appl. Phys. A 128(4), 293 (2022)

    ADS  Google Scholar 

  7. H. Yang, G. Zhang, Y. Lin, Electrical, magnetic and magnetoelectric properties of laminated 0.65BiFeO3–0.35BaTiO3/BiY2Fe5O12 composites. Smart Mater. Struct. 24, 065028 (2015)

    ADS  Google Scholar 

  8. Z. Tang, Z. Zhang, J. Chen, S. Zhao, Magnetoelectric effect of lead-free perovskite BiFeO3 /Bi0.5(Na0.85K0.15)0.5TiO3 composite films. J. Alloys Compd. 696, 1–8 (2017)

    Google Scholar 

  9. M. Kumar, S. Shankar, O.P. Thakur, A.K. Ghosh, Studies on magnetoelectric coupling and magnetic properties of (1−x) BiFeO3–xBaTiO3 solid solutions. J. Mater. Sci. Mater. Electron. 26, 1427–1434 (2014)

    Google Scholar 

  10. U.K. Wadne, R.H. Kadam, K.M. Batoo, M.L. Mane, S. Hussain, S.E. Shirsath, A.R. Shitre, Enhanced multiferroic effect in multi-phased Eu substituted Bi–Fe–Mn perovskite oxides. Ceram. Int. 49, 8132–8139 (2023)

    Google Scholar 

  11. E.C. Aguiar, M.A. Ramirez, J.A. Cortes, L.S. Rocha, E. Borsari, A.Z. Simoes, Magnetoelectric coupling of LaFeO3/BiFeO3 heterostructures. Ceram. Int. 41, 13126–13134 (2015)

    Google Scholar 

  12. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  13. S.N. Tripathy, D.K. Pradhan, K.K. Mishra, S. Sen, R. Palai, M. Paulch, J.F. Scott, R.S. Katiyar, D.K. Pradhan, Phase transition and enhanced magneto-dielectric response in BiFeO3-DyMnO3 multiferroics. J. Appl. Phys. 117, 144103 (2015)

    ADS  Google Scholar 

  14. A. Ahlawat, S. Satapathy, R.J. Choudhary, M.K. Sing, P.K. Gupta, Mater. Lett. 181, 123–126 (2016)

    Google Scholar 

  15. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun. 138, 76–81 (2006)

    ADS  Google Scholar 

  16. Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan, C.W. Nan, Y.H. Lin, Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog. Mater. Sci. 127, 100943 (2022)

    Google Scholar 

  17. S.K. Singh, H. Ishiwara, K. Maruyama, Enhanced polarization and reduced leakage current in BiFeO3 thin films fabricated by chemical solution deposition. J. Appl. Phys. 100, 064102 (2006)

    ADS  Google Scholar 

  18. V.V. Atuchin, D. Vinnik, T. Gavrilova, S. Gudkova, L. Isaenko, X. Jiang, L. Pokrovsky, I. Prosvirin, L. Mashkovtseva, Z. Lin, Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J. Phys. Chem. C 120(9), 5114–5123 (2016)

    Google Scholar 

  19. D. Vinnik, D. Klygach, V. Zhivulin, A. Malkin, M. Vakhitov, S. Gudkova, D. Galimov, D. Zherebtsov, E. Trofimov, N. Knyazev, Electromagnetic properties of BaFe12O19: Ti at centimeter wavelengths. J. Alloy. Compd. 755, 177–183 (2018)

    Google Scholar 

  20. F. Naheed, M. Irfan, S. Gulbadan, M.N. Akhtar, G.A. Ashraf, R.T. Rasool, M.A. Khan, Evaluations of the structural, dielectric, and microwave properties of Pr-doped Ba2Co2Fe12− xPrxO22 (x= 0.0–0.1) Y-type hexaferrites for high frequency applications. Mater. Today Commun. 35, 106006 (2023)

    Google Scholar 

  21. S. Sharma, N. Ahmad, S. Khan, Effect on structural, optical, electrical, and magnetic properties of Ce and Ni co-doped SmFeO3 nanostructures. J. Mater. Sci. Mater. El. 34(6), 476 (2023)

    Google Scholar 

  22. A. Sankaramahalingam, J.B. Lawrence, Structural, optical, and magnetic properties of MgFe2O4 synthesized with addition of copper. Syn. React. Inorg. Metaorg. Nanometal. Chem. 42, 121–127 (2012)

    Google Scholar 

  23. D. Kang, X. Yu, M. Ge, W. Song, One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal. Microporous Mesoporous Mater. 207, 170–178 (2015)

    Google Scholar 

  24. J. Shen, J. Mo, Y. Tao, Y. Xia, M. Liu, Magnetic and Mössbauer spectroscopy of Co/MgFe2O4 spinel. J. Low Temp. Phys. 209(2022), 166–181 (2022)

    ADS  Google Scholar 

  25. N.M. Sadik, A. Sattar, M. Rashad, H. Elsayed, Physical, magnetic and enhanced electrical properties of SrTiO3–MgFe2O4 nanocomposites. SN Appl. Sci. 2, 1–9 (2020)

    Google Scholar 

  26. R. Tadi, Y.I. Kim, D. Sarkar, C. Kim, K.S. Ryu, Magnetic and electrical properties of bulk BaTiO3 + MgFe2O4 composite. J. Magn. Magn. Mater. 323(5), 564–568 (2011)

    ADS  Google Scholar 

  27. M. Zaid, Y. Altowairqi, S. Majid, A. Somvanshi, M. Shariq, S.K. Ali, S. Ashraf, A. Khan, N. Ahmad, Comparative structural, optical, and dielectric studies of Zn1− xMnx/2Ax/2O (A= Ni, Co and x= 0.24) nanoparticles. Appl. Phys. A 128(11), 1002 (2022)

    ADS  Google Scholar 

  28. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, (BaTiO3)1‐x+(Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. 104(11), 5648–5658 (2021)

    Google Scholar 

  29. M. Muneeswaran, P. Jegatheesan, N. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8(3), 341–346 (2013)

    Google Scholar 

  30. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing, Boston, 1956)

    MATH  Google Scholar 

  31. A.R. Khan, G.M. Mustafa, S.K. Abbas, S. Atiq, M. Saleem, S.M. Ramay, S. Naseem, Flexible ferroelectric and magnetic orders in BiFeO3/MnFe2O4 nanocomposites to steer wide range energy and data storage capability. Results Phys. 16, 102956 (2020)

    Google Scholar 

  32. P.J. Reséndiz-Hernández, D.H. de Hoyos-Sifuentes, E.O. Reséndiz-Flores, R.M. Ochoa-Palacios, G. Altamirano-Guerrero, Synthesis of pure MgFe2O4 nanoparticles: an intelligent prediction approach and experimental validation. J. Sol-gel. Sci. Technol. 107, 620–628 (2023)

    Google Scholar 

  33. A. Khalid, S.K. Abbas, G.M. Mustafa, S. Atiq, S.S. Hussain, M.S. Anwar, S. Naseem, Analysis of dielectric dispersion and magnetoelectric coupling in BiFeO3 and NiFe2O4 nanocomposites. Ceram. Int. 45, 24453–24460 (2019)

    Google Scholar 

  34. R. Pandey, L.K. Pradhan, M. Kar, Room temperature magnetic biasing in Bi0.85La0.15FeO3 and BaTiO3 composite. J. Appl. Phys. A. 126, 1–14 (2020)

    Google Scholar 

  35. N. Ahmad, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloy. Compd. 720, 502–509 (2017)

    Google Scholar 

  36. D.H. Kim, N.M. Aimon, C.A. Ross, Self-assembled growth and magnetic properties of a BiFeO3-MgFe2O4 nanocomposite prepared by pulsed laser deposition. J. Appl. Phys. 113, 17B510 (2013)

    Google Scholar 

  37. A.S. Priya, D. Geetha, Structural and frequency dependent dielectric properties of Ba doped Ni–Zn ferrite powders. Phosphorus Sulfur Silicon Relat. Elem. 197, 186–191 (2022)

    Google Scholar 

  38. H.B. Sharma, K.N. Devi, V. Gupta, J.H. Lee, S.B. Singh, Ac electrical conductivity and magnetic properties of BiFeO3–CoFe2O4 nanocomposites. J. Alloys Compd. 599, 32–39 (2014)

    Google Scholar 

  39. S. Atiq, A. Fatima, M. Khalid, A. Hassan, G.M. Mustafa, S.A. Siddiqi, S. Naseem, Multifunctionality of magnetoelectrically coupled Ni/Cr co-doped BiFeO3 multiferroics. J. Alloys Compd. 789, 400–408 (2019)

    Google Scholar 

  40. K. Ramarao, B.R. Babu, B.K. Babu, V. Veeraiah, K. Rajasekhar, B.R. Kumar, B.S. Latha, Enhancement in magnetic and electrical properties of Ni substituted Mg ferrite. Mater. Sci.-Pol. 36, 644–654 (2018)

    ADS  Google Scholar 

  41. G.M. Mustafa, M. Saleem, S. Atiq, S. Riaz, S.A. Siddiqi, S. Naseem, Structural tuning of dielectric properties of Ce-substituted Nd2Zr2O7. J. Saudi Chem. Soc. 23, 397–406 (2019)

    Google Scholar 

  42. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67, 2743–2751 (2013)

    Google Scholar 

  43. K. Negi, M. Kumar, M. Chauhan, Solution combustion synthesis of CeO2/ZnO nano-composite as a potential scaffold for detection and degradation of p-nitrophenol. Mater. Chem. Phys. 226, 59–65 (2019)

    Google Scholar 

  44. M.A. Khan, K. Shahbaz, G.M. Mustafa, S.M. Ramay, S. Naseem, S. Atiq, Optimization of magnetoelectric coupling in BiFeO3-BaTiO3-MnFe2O4 tri-phase composites for ultra-sensitive devices. J. Alloys Compd. 947, 169571 (2023)

    Google Scholar 

  45. S. Shankar, O.P. Thakur, M. Jayasimhadri, Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges. J. Mater. Sci.-Mater. El. 31, 12226–12237 (2020)

    Google Scholar 

  46. C. Zhang, Z.L. Lv, J.K. Wu, J. Miao, X.G. Xu, Q. Li, K. Lin, X. Chen, X.H. Li, Y.L. Cao, J.X. Deng, Enhanced ferroelectric and ferrimagnetism properties at room temperature in BaTiO3 doped GaFeO3 ceramics. Chem. Phys. Lett. 813, 140316 (2023)

    Google Scholar 

  47. A. Khalid, G.M. Mustafa, S. Naseem, S. Atiq, Sm-mediated dielectric characteristics and tunable magneto-electric coefficient of 0.5Bi1-xSmxFe0.95Mn0.05O3–0.5PbTiO3 composites. Ceram. Int. 45, 7690–7695 (2019)

    Google Scholar 

  48. P. Tang, D. Kuang, S. Yang, Y. Zhang, Structural, morphological and multiferroic properties of the hydrothermally grown gadolinium (Gd) and manganese (Mn) doped sub-micron bismuth ferrites. J. Alloys Compd. 656, 912–919 (2016)

    Google Scholar 

  49. V.A. Reddy, N.P. Pathak, R. Nath, Enhanced magnetoelectric coupling in transition-metal-doped BiFeO3 thin films. Solid State Commun. 171, 40–45 (2013)

    ADS  Google Scholar 

  50. M. Nadeem, W. Khan, S. Khan, S. Husain, A. Ansari, Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J. Appl. Phys. 124, 164105 (2018)

    ADS  Google Scholar 

  51. P. Augustine, N. Yerol, N. Kalarikkal, B. Raneesh, M. Rahul, S.K. Chacko, Room temperature multiferroic properties of BiFeO3–MnFe2O4 nanocomposites. Ceram. Int. 47, 15267–15276 (2021)

    Google Scholar 

  52. J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, D. Yu, Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 5, 3937–3945 (2014)

    Google Scholar 

  53. M. Manikandan, K.S. Kumar, C. Venkateswaran, Mn doping instigated multiferroicity and magneto-dielectric coupling in KNbO3. J. Appl. Phys. 118, 234105 (2015)

    ADS  Google Scholar 

  54. R. Wongmaneerung, J. Padchasri, R. Tipakontitikul, T. Loan, P. Jantaratana, R. Yimnirun, S. Ananta, Phase formation, dielectric and magnetic properties of bismuth ferrite–lead magnesium niobate multiferroic composites. J. Alloy. Compd. 608, 1–7 (2014)

    Google Scholar 

  55. M. Salami, O. Mirzaee, A. Honarbakhsh-Raouf, S. Lavasani, A. Moghadam, Structural, morphological and magnetic parameters investigation of multiferroic (1–x)Bi2Fe4O9-xCoFe2O4 nanocomposite ceramics. Ceram. Int. 43(17), 14701–14709 (2017)

    Google Scholar 

  56. H. Maleki, M. Zakeri, R. Fathi, Experimental study of the effect of yttrium on the structural, thermal, and magnetic properties of BiFeO3. Appl. Phys. A 124, 1–6 (2018)

    Google Scholar 

  57. S. Martin, N. Baboux, D. Albertini, B. Gautier, Interpretation of multiscale characterization techniques to assess ferroelectricity: the case of GaFeO3. Ultramicroscopy 172, 47–51 (2017)

    Google Scholar 

  58. A.E.R. Mahmoud, M. Ezzeldien, S.K.S. Parashar, Enhancement of switching/un-switching leakage current and ferroelectric properties appraised by PUND method of (Ba1-x Cax)TiO3 lead free piezoelectric near MPB. Solid State Sci. 93, 44–54 (2019)

    ADS  Google Scholar 

  59. A. Quader, G.M. Mustafa, S.K. Abbas, H. Ahmad, S. Riaz, S. Naseem, S. Atiq, Efficient energy storage and fast switching capabilities in Nd-substituted La2Sn2O7 pyrochlores. Chem. Eng. J. 396, 125198 (2020)

    Google Scholar 

  60. C. Ge, C. Wang, K.J. Jin, H.B. Lu, G.Z. Yang, Recent progress in ferroelectric diodes: explorations in switchable diode effect. Nanomicro Lett. 5, 81–87 (2013)

    Google Scholar 

  61. S.C. Mazumdar, M.N.I. Khan, M.F. Islam, A.K.M.A. Hossain, Enhanced multiferroic properties in (1–y)BiFeO3–yNi0.50Cu0.05Zn0.45Fe2O4 composites. J. Magn. Magn. Mater. 390, 61–69 (2015)

    ADS  Google Scholar 

  62. A.S. Priya, I.B.S. Banu, S. Anwar, Investigation of multiferroic properties of doped BiFeO3–BaTiO3 composite ceramics. Mater. Lett. 142, 42–44 (2015)

    Google Scholar 

  63. F. Xue, Y. Tian, G. Jian, W. Li, L. Tang, P. Gue, Ferroelectromagnetic pseudocubic BiFeO3-LaFeO3-PbFeO2.5: leakage current, dielectric, and multiferroic properties at room temperature. Ceram. Int. 46, 930–936 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Researchers Supporting Project number (RSP2023R71), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MHM: conceptualization, data curation, formal analysis, and writing—original draft. ZI: formal analysis, software, and methodology. SZ: data curation and investigation. AK: formal analysis and software. SMR: data curation, investigation, and software. SA: conceptualization, project administration, supervision, and writing—review and editing.

Corresponding author

Correspondence to Shahid Atiq.

Ethics declarations

Conflict of interest

The authors declare that they have no such financial or other competing interests to declare that could be there to influence the work presented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqbool, M.H., Iqbal, Z., Zawar, S. et al. Analysis of interphase magnetoelectric coupling in Bi0.9La0.1FeO3–MgFe2O4 composites. Appl. Phys. A 129, 779 (2023). https://doi.org/10.1007/s00339-023-07052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07052-8

Keywords

Navigation