Skip to main content
Log in

Fabrication of an efficient LPG sensing material based on PANI/MgO–Ru nanocomposite functional at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

5% Ru-doped MgO and PANI/MgO–Ru nanocomposite were successfully synthesized using sol–gel and in situ polymerization methods, respectively. Several characterization techniques were employed to analyze the structural, spectroscopic, topographical, elemental, and chemical properties of the synthesized materials using different characterization techniques. With the help of XRD patterns, the estimated crystallite sizes for 5% Ru-doped MgO nanoparticles and PANI/MgO–Ru nanocomposite were calculated to be 20 and 11 nm, respectively. By examining the SEM results, it was observed that all the materials possess a nearly spherical surface morphology. The availability of pores was also found at the surface of the materials which evinces that the synthesized materials can perform well in the context of gas sensing. The synthesized materials were also examined for LPG sensing investigations. Some noteworthy parameters of LPG sensing such as response time, recovery time, reproducibility, and sensitivity were estimated for all the materials. LPG sensing investigations reveal that the PANI/MgO–Ru might be a promising and excellent sensing material for the fabrication of an efficient LPG sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14, 21266 (2013)

    Google Scholar 

  2. Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, J. Nanomater.Nanomater. (2012). https://doi.org/10.1155/2012/624520

    Article  Google Scholar 

  3. H. Pan, Y.P. Feng, ACS Nano 2, 2410 (2008)

    Google Scholar 

  4. A.L. Schoenhalz, J.T. Arantes, A. Fazzio, G.M. Dalpian, J. Phys. Chem. C 114, 18293 (2010)

    Google Scholar 

  5. L. Stander, L. Theodore, Environmental implications of nanotechnology—an update. Int. J. Environ. Res. Public Health (2011). https://doi.org/10.3390/ijerph8020470

    Article  Google Scholar 

  6. N. Singh, P.K. Singh et al., J. Inorg. Organomet. Polym.Organomet. Polym. (2016). https://doi.org/10.1007/s10904-016-0411-x

    Article  Google Scholar 

  7. T.G. Smijs, S. Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl.. Sci. Appl. (2011). https://doi.org/10.2147/NSA.S19419

    Article  Google Scholar 

  8. V.S. Puli, D.K. Pradhan, A. Kumar et al., J. Mater. Sci. Mater. Electron. 23, 2005 (2012)

    Google Scholar 

  9. A.K. Samanta, R. Bhattacharyya, S. Jose, G. Basu, R. Chowdhury, Cellulose (2017). https://doi.org/10.1007/s10570-016-1171-z

    Article  Google Scholar 

  10. M. Tan, G. Qiu, Y.P. Ting, Bioresour. Technol. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.02.094

    Article  Google Scholar 

  11. X. Yao, X. Xin, Y. Zhang, J. Wang, Z. Liu, X. Xu, J. Alloys Compd. (2012). https://doi.org/10.1016/j.jallcom.2012.01.047

    Article  Google Scholar 

  12. Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Appl. Mater. Interfaces 7, 14303 (2015)

    Google Scholar 

  13. H. Qin et al., Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.02.051

    Article  Google Scholar 

  14. Z. Li, W. Chen, W. Zeng, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-014-2574-y

    Article  Google Scholar 

  15. J. Zhao et al., Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.09.044

    Article  Google Scholar 

  16. E.A. Kirupa, A.M.E. Raj, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4362-3

    Article  Google Scholar 

  17. J.S. Tawale et al., Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2017.08.028

    Article  Google Scholar 

  18. C. Dong et al., Mater. Chem. Phys. (2016). https://doi.org/10.1016/j.matchemphys.2016.09.036

    Article  Google Scholar 

  19. H. Du et al., Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.05.055

    Article  Google Scholar 

  20. S.-P. Chang et al., Superlattices Microstruct.Microstruct. (2010). https://doi.org/10.1016/j.spmi.2010.03.006

    Article  Google Scholar 

  21. B.C. Yadav et al., Opt. Laser Technol. (2013). https://doi.org/10.1016/j.optlastec.2012.12.011

    Article  Google Scholar 

  22. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Wille, O. Lupan, R. Adelung, Kona Powder J. 31, 92 (2014)

    Google Scholar 

  23. A.A. Pilarska, L. Klapiszewski, T. Jesionowski, Powder Technol. 319, 373 (2017)

    Google Scholar 

  24. P.K. Singh, N. Singh, M. Singh et al., Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04712-5

    Article  Google Scholar 

  25. X.X. Dong, M.Y. Li, N.N. Feng, Y.M. Sun, C. Yang, Z.L. Xu, RSC Adv. 5, 86485 (2015)

    ADS  Google Scholar 

  26. Y. Tao, X. Cao, Y. Peng, Y. Liu, Sens. Actuators B Chem. (2010). https://doi.org/10.1016/j.snb.2010.04.043

    Article  Google Scholar 

  27. Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, Y. Qian, Chem. Mater. 13, 435 (2001)

    Google Scholar 

  28. H. Cui, X. Wua, D. Zhang, J. Zhang, H. Xiao, Y. Chen, Proc. Eng. 102, 410 (2015)

    Google Scholar 

  29. Z. Chai, Q. Tian, J. Ye, S. Zhang, G. Wang, Y. Qi, Y. Che, G. Ning, J. Mater. Sci. 55, 4408 (2020)

    ADS  Google Scholar 

  30. S.K. Suleimanov, V.G. Dyskin, Z.S. Settarova, M.U. Dzhanklych, N.A. Kulagina, M.N. Tursunov, Appl. Solar Energy 46, 296 (2010)

    Google Scholar 

  31. J.G. Smith, J. Naruse, H. Hiramats, D.J. Siegel, Chem. Mater. 29, 3152 (2017)

    Google Scholar 

  32. G.B. Elvira, G.C. Francisco, S.M. Víctor, M.L.R. Alberto, J. Environ. Sci. 57, 418 (2017)

    Google Scholar 

  33. G. Zelmanov, R. Semiat, Water Res. 42, 492 (2008)

    Google Scholar 

  34. P. Pucher, M. Benmami, R. Azouani, G. Krammer, K. Chhor, J.F. Bocquet, A.V. Kanaev, Appl. Catal. ACatal. A 332, 297 (2007)

    Google Scholar 

  35. S.Y. Peng, Z.N. Xu, Q.S. Chen, Z.Q. Wang, Y. Chen, D.M. Lv, G. Lu, G.C. Guo, Catal. Sci. Technol.. Sci. Technol. 4, 1925 (2014)

    Google Scholar 

  36. N.S. Sidorov, A.V. Palnichenko, O.M. Vyaselev, Physica C C 480, 123 (2012)

    ADS  Google Scholar 

  37. B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, P. Darabi, Result Phys. 12, 2038 (2019)

    ADS  Google Scholar 

  38. M.M. Obeid, S.J. Edrees, M.M. Shukur, Superlattice Microstruct. 122, 124 (2018)

    ADS  Google Scholar 

  39. H. Fang, S. Wu, T. Ayvali et al., Nat. Commun.Commun. 14, 647 (2023)

    ADS  Google Scholar 

  40. X. Ju et al., Appl. Catal. B Environ.Catal. B Environ. 211, 167 (2017)

    Google Scholar 

  41. T. Ohira, M. Kawamura, M. Fukuda, K. Alvarez, B. Ozkal, O. Yamamoto, J. Mater. Eng. Perform. 19, 374 (2010)

    Google Scholar 

  42. S. Ramachandran, J. Narayan, Appl. Phys. Lett. 90, 132511 (2007)

    ADS  Google Scholar 

  43. K. Ahmed, M. Rabah, M. Khaled, B. Mohamed, M. Mokhtar, Optik 127, 8253 (2016)

    ADS  Google Scholar 

  44. J. Crampon, B. Escaig, J. Mater. Sci. 13, 2619 (1978)

    ADS  Google Scholar 

  45. S. Benedetti, N. Nilius, S. Valeri, J. Phys. Chem. C 119, 254699 (2015)

    Google Scholar 

  46. H. Gómez-Pozos et al., Sensors 13, 3432 (2013)

    ADS  Google Scholar 

  47. K.M. Kim, K.I. Choi, H.M. Jeong, H.J. Kim, H.R. Kim, J.H. Lee, Sens. Actuators. B Chem. 166, 733 (2012)

    Google Scholar 

  48. P.K. Singh, N. Singh, M. Singh, P. Tandon, S.K. Singh, J. Mater. Eng. Perform. 28, 7592 (2019)

    Google Scholar 

  49. S. Kaur, J. Singh, R. Rawat et al., J. Mater. Sci. Mater. Electron. 29, 11679 (2018)

    Google Scholar 

  50. P.K. Singh, N. Singh, M. Singh et al., Appl. Phys. A 126, 321 (2020)

    ADS  Google Scholar 

  51. N. Singh, P.K. Singh, M. Singh, D. Gangopadhyay, S.K. Singh, P. Tandon, New J. Chem. 43, 17340 (2019)

    Google Scholar 

  52. Y. Fu et al., Nano-Micro Lett. (2018). https://doi.org/10.1007/s40820-018-0228-y

    Article  Google Scholar 

  53. C.C. Hung et al., Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2010.03.012

    Article  Google Scholar 

  54. G. Mashao et al., Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.03.079

    Article  Google Scholar 

  55. A. Sáaedi, P. Shabani, R. Yousefi, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01420-y

    Article  Google Scholar 

  56. P. Jha et al., Mater. Chem. Phys. (2013). https://doi.org/10.1016/j.matchemphys.2013.03.040

    Article  Google Scholar 

  57. R.A. Naikoo et al., Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.02.021

    Article  Google Scholar 

  58. V.J.R. Oliveira et al., Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.06.070

    Article  Google Scholar 

  59. D. Naegele, R. Bittihn, Solid State Ion. (1988). https://doi.org/10.1016/0167-2738(88)90316-5

    Article  Google Scholar 

  60. J. Li, L. Liu, D. Zhang, D. Yang, J. Guo, J. Wei, Synth. Met. (2014). https://doi.org/10.1016/j.synthmet.2014.02.026

    Article  Google Scholar 

  61. J. Bhadra, D. Sarkar, Indian J. Phys. (2010). https://doi.org/10.1007/s12648-010-0073-4

    Article  Google Scholar 

  62. Y. Yang, A.J. Heeger, Appl. Phys. Lett. (1994). https://doi.org/10.1063/1.110853

    Article  Google Scholar 

  63. Z. Wen, Q. Shen, X. Sun, Nano-Micro Lett. (2017). https://doi.org/10.1007/s40820-017-0146-4

    Article  Google Scholar 

  64. Y.H. Kim, M. Kim, S. Oh, H. Jung, Y. Kim, T.S. Yoon, Y.S. Kim, H.H. Lee, Appl. Phys. Lett. 10(1063/1), 4704571 (2012)

    Google Scholar 

  65. Z. Liu et al., Synth. Met. 156, 721–723 (2006). https://doi.org/10.1016/j.synthmet.2006.04.001

    Article  Google Scholar 

  66. E. Armelin, R. Pla, F. Liesa, X. Ramis, J.I. Iribarren, C. Alemán, Corros. Sci.. Sci. (2008). https://doi.org/10.1016/j.corsci.2007.10.006

    Article  Google Scholar 

  67. B. Xu, Y. Ovchenkov, M. Bai, A.N. Caruso, A.V. Sorokin, S. Ducharme, B. Doudin, P.A. Dowben, Appl. Phys. Lett. 81, 4281 (2002)

    ADS  Google Scholar 

  68. F. Yakuphanoglu, M. Kandaz, B. FilizSenkalc, Sens. Actuator A Phys. 153, 191 (2009)

    Google Scholar 

  69. F.M. Kelly, L. Meunier, C. Cochrane, V. Koncar, Displays (2013). https://doi.org/10.1016/j.displa.2012.10.001

    Article  Google Scholar 

  70. D.S. Dhawale et al., Sens. Actuator B Chem. (2008). https://doi.org/10.1016/j.snb.2008.07.003

    Article  Google Scholar 

  71. H. Hu, M. Trejo, J.M. Saniger, A. Garcia-Valenzuela, Sens. Actuators B Chem. (2002). https://doi.org/10.1016/S0925-4005(01)00984-4

    Article  Google Scholar 

  72. M. Campos, L.O.S. Bulhoes, C.A. Lindino, Sens. Actuators A Phys. 87, 67 (2000)

    Google Scholar 

  73. N.E. Agbor, J.P. Creswell, M.C. Petty, A.P. Monkman, Sens. Actuators B Chem. 41, 137 (1997)

    Google Scholar 

  74. A. Mekki et al., Organ. Electron. (2014). https://doi.org/10.1016/j.orgel.2013.10.012

    Article  Google Scholar 

  75. S. Takeda, Thin Solid Films 343–344, 313 (1999)

    ADS  Google Scholar 

  76. A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G.K. Mani, P. Shankar, J.B.B. Rayappan, J. Alloys Compd. 688, 422 (2016)

    Google Scholar 

  77. R. Kumar, B.C. Yadav, J. Inorg. Organomet. Polym. Mater.Organomet. Polym. Mater. 26, 1421 (2016)

    Google Scholar 

  78. S.S. Joshi, C.D. Lokhande, S.H. Han, Sens. Actuators B 123, 240 (2007)

    Google Scholar 

  79. S. Kaur, J. Singh, R. Rawat, S. Kumar, H. Kaur, K.V. Rao, M. Rawat, J. Mater. Sci. Mater. Electron. 29, 11679 (2018)

    Google Scholar 

  80. P.T. Patil, R.S. Anwane, S.B. Kondawar, Proc. Mater. Sci. 10, 195 (2015)

    Google Scholar 

  81. S.J. Patil, R.N. Bulakhe, C.D. Lokhande, J. Anal. Appl. Pyrol.Pyrol. 117, 310 (2016)

    Google Scholar 

  82. R.K. Sonker, B.C. Yadav, S.R. Sabhajeet, J. Mater. Sci. Mater. Electron. 28, 14471 (2017)

    Google Scholar 

  83. T. Sen, N.G. Shimpi, S. Mishra, J. Appl. Polym. Sci.Polym. Sci. 133, 44115 (2016)

    Google Scholar 

  84. B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, V.B. Patil, Measurement 45, 94 (2012)

    ADS  Google Scholar 

  85. V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sens. Actuators B Chem. 120, 551 (2007)

    Google Scholar 

  86. N. Singh, P.K. Singh, M. Singh, P. Tandon, S.K. Singh, S. Singh, J. Mater. Sci. Mater. Electron. 30, 4487 (2019)

    Google Scholar 

  87. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Sensors 12, 2610 (2012)

    ADS  Google Scholar 

  88. T. Shukla, J. Sens. Sci. Technol. 2, 102 (2012)

    Google Scholar 

  89. K. Nejati, Z. Rezvani, R. Pakizevand, Int. Nano Lett. 1, 75 (2011)

    Google Scholar 

  90. M. Khan, A.H. Naqvi, M. Ahmad, Toxicol. Rep. 2, 765 (2015)

    Google Scholar 

  91. E.E. Tanrıverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Nano-Micro Lett. (2011). https://doi.org/10.3786/nml.v3i2

    Article  Google Scholar 

  92. D. Geethalakshmi, N. Muthukumarasamy, R. Balasundaraprabhu, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3427-z

    Article  Google Scholar 

  93. M. Zhou, Z. Wei, H. Qiao, L. Zhu, H. Yang, T. Xia, J. Nanomater.Nanomater. (2009). https://doi.org/10.1155/2009/968058

    Article  Google Scholar 

  94. L. Kumari, U. Kumar, B.C. Yadav et al., Appl. Phys. A 128, 150 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

N.S. and P.K.S. acknowledge support under Centre of Excellence, Govt. of Uttar Pradesh (360/70-4-2019-1035/2018) and UGC-BSR [F25-1/2014-15(BSR)7-177/2007(BSR)], respectively.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the manuscript. NS and PKS synthesized the materials and performed LPG sensing investigations. SKS, MS and NA assisted in performing of different characterizations viz. XRD, FTIR, SEM and EDS along with their interpretation. The first draft of the manuscript was written by NS and PKS. Necessary modifications were recommended in the first draft by PT. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Neetu Singh.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Singh, P.K., Singh, M. et al. Fabrication of an efficient LPG sensing material based on PANI/MgO–Ru nanocomposite functional at room temperature. Appl. Phys. A 129, 773 (2023). https://doi.org/10.1007/s00339-023-07045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07045-7

Keywords

Navigation