Skip to main content
Log in

Nanoarchitectonics of polyaniline–zinc oxide (PANI–ZnO) nanocomposite for enhanced room temperature ammonia sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript


For the efficient detection and monitoring of dangerous gases across a variety of sectors, gas sensors are crucial. This work is focused on the fabrication of room temperature ammonia sensor based on polyaniline (PANI) and its nanocomposite with zinc oxide (ZnO) via facile in-situ chemical polymerization method. A number of different samples with varying amount of ZnO incorporated in polyaniline matrix and studied ammonia sensing properties for the temperature range 20–100 °C. In comparison with pristine PANI and other prepared sensors, the ammonia sensor containing 20 wt% ZnO in PANI (PZ20) showed greater gas sensing performance. The proposed sensor exhibited the response of 1.43–25.24% for 5–200 ppm of NH3 with 5 ppm as lower limit of detection and 18 s as response time. In addition, the sensor exhibited good repeatability, long-term durability and selectivity over other gaseous analytes, such as H2, C2H5OH, NO2, CO and CO2. The proposed ammonia sensor showed its potential towards detection of ammonia at ambient environmental conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available on request.


  1. S.D. Lawaniya, N. Meena, S. Kumar, Y. Yu, K. Awasthi, IEEE Sens. J. 23, 1 (2022)

    Google Scholar 

  2. D. Maity, R.T.R. Kumar, ACS Sens. 3, 1822 (2018)

    Article  Google Scholar 

  3. D. Kwak, Y. Lei, R. Maric, Talanta 204, 713 (2019)

    Article  Google Scholar 

  4. J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, J. Hazard. Mater. 381, 120919 (2020)

    Article  Google Scholar 

  5. X. Liu, W. Zheng, R. Kumar, M. Kumar, J. Zhang, Coord. Chem. Rev. 462, 214517 (2022)

    Article  Google Scholar 

  6. S.D. Lawaniya, S. Kumar, Y. Yu, K. Awasthi, Sens. Actuators B Chem. 382, 133566 (2023)

    Article  Google Scholar 

  7. S.D. Lawaniya, S. Kumar, Y. Yu, H.-G. Rubahn, Y.K. Mishra, K. Awasthi, Mater. Today Chem. 29, 101428 (2023)

    Article  Google Scholar 

  8. M. Sravanthi, K.G. Manjunatha, Mater. Today Proc. 46, 5964 (2020)

    Article  Google Scholar 

  9. Y. Wang, A. Liu, Y. Han, T. Li, Polym. Int. 69, 7 (2020)

    Article  Google Scholar 

  10. Y.C. Wong, B.C. Ang, A.S.M.A. Haseeb, A.A. Baharuddin, Y.H. Wong, J. Electrochem. Soc. 167, 037503 (2020)

    Article  ADS  Google Scholar 

  11. S. Abdulla, D.V. Ponnuvelu, B. Pullithadathil, Chem. Sel. 2, 4277 (2017)

    Google Scholar 

  12. A. Bag, N. Lee, Adv. Mater. Technol. 6, 2000883 (2021)

    Article  Google Scholar 

  13. S. Kumar, S.D. Lawaniya, S. Agarwal, Y.-T. Yu, S.R. Nelamarri, M. Kumar, Y.K. Mishra, K. Awasthi, Sens. Actuators B Chem. 375, 132943 (2023)

    Article  Google Scholar 

  14. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Sens. Actuators B Chem. 292, 24 (2019)

    Article  Google Scholar 

  15. S. Agarwal, S. Kumar, E. Navarrete Gatell, M. Kumar, E. Llobet, K. Awasthi, Mater. Lett. 10, 100068 (2021)

    Google Scholar 

  16. S. Agarwal, S. Kumar, H. Agrawal, M.G. Moinuddin, M. Kumar, S.K. Sharma, K. Awasthi, Sens. Actuators B Chem. 346, 130510 (2021)

    Article  Google Scholar 

  17. S. Agarwal, M.J. Ahemad, S. Kumar, D. Van Dung, P. Rai, M. Kumar, K. Awasthi, Y.-T. Yu, J. Alloys Compd. 900, 163545 (2022)

    Article  Google Scholar 

  18. S.L. Patil, M.A. Chougule, S.G. Pawar, S. Sen, A.V. Moholkar, J.H. Kim, V.B. Patil, Sens. Transducers 134, 120 (2011)

    Google Scholar 

  19. V. Talwar, O. Singh, R.C. Singh, Sens. Actuators B Chem. 191, 276 (2014)

    Article  Google Scholar 

  20. G. Zhu, Q. Zhang, G. Xie, Y. Su, K. Zhao, H. Du, Y. Jiang, Chem. Phys. Lett. 665, 147 (2016)

    Article  ADS  Google Scholar 

  21. S. Bai, X. Liu, D. Li, S. Chen, R. Luo, A. Chen, Sens. Actuators B Chem. 153, 110 (2011)

    Article  Google Scholar 

  22. S.D. Lawaniya, S. Kumar, Y. Yu, K. Awasthi, ACS Appl. Polym. Mater. 5, 1945 (2023)

    Article  Google Scholar 

  23. A. Kumar, V. Kumar, P.K. Sain, M. Kumar, K. Awasthi, Int. J. Hydrogen Energy 43, 21715 (2018)

    Article  Google Scholar 

  24. S. Vohra, M. Kumar, S.K. Mittal, M.L. Singla, J. Mater. Sci. Mater. Electron. 24, 1354 (2013)

    Article  Google Scholar 

  25. S. Mahalakshmi, N. Hema, P.P. Vijaya, Bionanoscience 10, 112 (2020)

    Article  Google Scholar 

  26. A. Kumar, A. Mishra, K. Awasthi, V. Kumar, Macromol. Symp. 357, 168 (2015)

    Article  Google Scholar 

  27. N.M. Barkoula, B. Alcock, N.O. Cabrera, T. Peijs, Polym. Polym. Compos. 16, 101 (2008)

    Article  Google Scholar 

  28. H. Tai, Y. Jiang, G. Xie, J. Yu, J. Mater. Sci. Technol. 26, 605 (2010)

    Article  Google Scholar 

  29. N.G. Deshpande, Y.G. Gudage, R. Sharma, J.C. Vyas, J.B. Kim, Y.P. Lee, Sens. Actuators B Chem. 138, 76 (2009)

    Article  Google Scholar 

  30. C. Zhu, U. Cakmak, O. Sheikhnejad, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, L. Huo, Z. Major, Nanotechnology 30, 255502 (2019)

    Article  ADS  Google Scholar 

  31. R. Malik, V.K. Tomer, Y.K. Mishra, L. Lin, Appl. Phys. Rev. 7, 21301 (2020)

    Article  Google Scholar 

  32. D.K. Bandgar, S.T. Navale, S.R. Nalage, R.S. Mane, F.J. Stadler, D.K. Aswal, S.K. Gupta, V.B. Patil, J. Mater. Chem. C 3, 9461 (2015)

    Article  Google Scholar 

  33. S.K. Shukla, N.B. Singh, R.P. Rastogi, Indian J. Eng. Mater. Sci. 20, 319 (2013)

    Google Scholar 

  34. T. Ramakrishnaiah, P. Gunderi Dhananjaya, C. Vakwadi Sainagesh, S. Reddy, S. Kumaraswamy, N. Chikkahanumajja Surendranatha, Sens. Rev. 42, 164 (2022)

    Article  Google Scholar 

Download references


The researchers would like to acknowledge Materials Research Centre, MNIT, Jaipur and Sophisticated Analytical Instrument Facility (SAIF), Manipal University, Jaipur for material characterizations.


No funding was received for conducting this study.

Author information

Authors and Affiliations



RK: investigation, methodology, formal analysis, writing—original draft; SDL: investigation, validation, formal analysis and editing; SK: investigation, writing—review and editing; NS: investigation, methodology, writing—review and editing; KA: conceptualization, supervision, resources, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Kamlendra Awasthi.

Ethics declarations

Conflict of interest

The author declares that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Lawaniya, S.D., Kumar, S. et al. Nanoarchitectonics of polyaniline–zinc oxide (PANI–ZnO) nanocomposite for enhanced room temperature ammonia sensing. Appl. Phys. A 129, 765 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: