Skip to main content
Log in

Enhancing magnetic properties of Ni3Si/Fe3O4@PVDF composites via lamellar Ni3Si template fabrication under pulsed magnetic fields

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study introduces a novel Ni3Si/Fe3O4@polyvinylidene fluoride (PVDF) composite, which is fabricated using a lamellar Ni3Si template under pulsed magnetic fields. The results reveal that increasing the content of Fe3O4 nanoparticles (NPs) enhances the densification of Fe3O4@PVDF slurries within the Ni3Si template. Interestingly, the ferromagnetic behavior of the Ni3Si/Fe3O4@PVDF composites shows an opposite trend to that of the Fe3O4@PVDF slurry as the magnetic flux density peak (MP) increases. Specifically, the maximum magnetization (Mmax) values achieved are 2.99 × 10–2, 2.79 × 10–2, 2.36 × 10–2, and 2.02 × 10–2 emu/g at MP values of 0, 4.5, 5.7, and 8.9 T, respectively. The influence of magnetic fields becomes more pronounced with higher Fe3O4 NPs content. However, when the Fe3O4 NPs content reaches 9.1% and the MP is 8.9 T, the uncertainty regarding the actual content of Fe3O4 NPs filled into the Ni3Si template poses challenges for the regulation of magnetic properties. Therefore, a lower Fe3O4 NPs content is more advantageous for controlling the magnetic properties of Ni3Si/Fe3O4@PVDF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available at authors and can be shared upon request.

References

  1. W.J. Li, W.C. Li, J.K. Wu, X.F. Han, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, J. Li, S.L. Che, Mat. Sci. Eng. B 291, 116387 (2023). https://doi.org/10.1016/j.mseb.2023.116387

    Article  Google Scholar 

  2. R. Sankaranarayanan, S. Shailajha, S. Seema, M.S. Kairon Mubina, Appl. Phys. A Phys. A 129, 262 (2023). https://doi.org/10.1007/s00339-023-06561-w

    Article  ADS  Google Scholar 

  3. R.K. Veena, A. Anand, M.M. Devi, V.S. Veena, J. Cyriac, N. Kalarikkal, S. Sagar, Appl. Phys. A 129, 598 (2023). https://doi.org/10.1007/s00339-023-06864-y

    Article  ADS  Google Scholar 

  4. H. Oraby, H.R. Tantawy, M.A. Correa-Duarte, M. Darwish, A. Elsaidy, I. Naeem, M.H. Senna, Nanomaterials 12, 2805 (2022). https://doi.org/10.3390/nano12162805

    Article  Google Scholar 

  5. G.M. Ispas, I. Craciunescu, S. Porav, R. Turcu, D. Gligor, Int. J. Environ. An. Ch. 103, 3483 (2023). https://doi.org/10.1080/03067319.2021.1910249

    Article  Google Scholar 

  6. C.N. Pinotti, L.M. de Souza, W.P. Marques, J.R.C. Proveti, H.C. Jesus, J.C.C. Freitas, P.S.S. Porto, E.P. Muniz, E.C. Passamani, Mater. Chem. Phys. 277, 125368 (2022). https://doi.org/10.1016/j.matchemphys.2021.125368

    Article  Google Scholar 

  7. L.S. Li, R.M. Erb, J.J. Wang, J. Wang, Y.M. Chiang, Adv. Energy Mater. 9, 1802472 (2019). https://doi.org/10.1002/aenm.201802472

    Article  Google Scholar 

  8. C. Kim, Y. Yang, D.H. Lopez, D. Ha, Appl. Phys. Lett. 117, 123903 (2020). https://doi.org/10.1063/5.0016456

    Article  ADS  Google Scholar 

  9. Q.Y. Shi, T.Y. Liu, S. Song, J.L. Wang, M.Q.H. Meng, I.E.E.E.T. Instrum, Meas. 70, 4003009 (2021). https://doi.org/10.1109/TIM.2021.3053056

    Article  Google Scholar 

  10. L.J. Zhao, C.M. Zhang, W.J. Zhang, Y.S. Shi, L.Y. Xia, W.L. Zhang, B. Peng, X.J. Jin, C.Y. Tian, F. Luan, A.C.S. Appl, Nano Mater. 4, 12920 (2021). https://doi.org/10.1021/acsanm.1c02996

    Article  Google Scholar 

  11. C.L. Alves, J.S. Oliveira, A. Tannus, A. Tarpani, J.R. Tarpani, Materials 14, 977 (2021). https://doi.org/10.3390/ma14040977

    Article  ADS  Google Scholar 

  12. P. Tan, Y. Jiang, X.Q. Liu, L.B. Sun, Chin. J. Chem. Eng. 27, 1324 (2019). https://doi.org/10.1016/j.cjche.2018.11.004

    Article  Google Scholar 

  13. F.F. Lu, A.Q. Dong, G.J. Ding, K. Xu, J.M. Li, L.J. You, J. Mol. Liq. 294, 111515 (2019). https://doi.org/10.1016/j.molliq.2019.111515

    Article  Google Scholar 

  14. C.E. Arinzechukwu, S.O. Aisida, A. Agbogu, I. Ahmad, F.I. Ezema, Appl. Phys. A 128, 1088 (2022). https://doi.org/10.1007/s00339-022-06248-8

    Article  ADS  Google Scholar 

  15. X.Y. Qi, Z.Y. Chang, G.Q. Fu, T.F. Chen, Nanotechnology 32, 105101 (2021). https://doi.org/10.1088/1361-6528/abc781

    Article  ADS  Google Scholar 

  16. S.M. Yu, X.G. Liu, G.J. Xu, Y. Qiu, L.L. Cheng, Desalin. Water Treat. 57, 16943 (2016). https://doi.org/10.1080/19443994.2015.1083892

    Article  Google Scholar 

  17. T. Charoensuk, W. Thongsamrit, C. Ruttanapun, P. Jantaratana, C. Sirisathitkul, Nanomaterials 11, 558 (2021). https://doi.org/10.3390/nano11030558

    Article  Google Scholar 

  18. Y.L. Zhang, X.A. Fan, W.T. Hu, Z.G. Luo, Z.J. Yang, G.Q. Li, Y.W. Li, J. Magn. Magn. Mater. 514, 167295 (2020). https://doi.org/10.1016/j.jmmm.2020.167295

    Article  Google Scholar 

  19. P.A. Anggoro, T.E. Saraswati, W.W. Raharjo, J. Phys. Conf. 2190, 012024 (2022). https://doi.org/10.1088/1742-6596/2190/1/012024

    Article  Google Scholar 

  20. J. Wang, W. Xiong, L. Huang, Y.X. Li, Z.L. Zuo, X.Y. Hu, T. Wang, J.Q. Xiao, J. Hu, Phys. B 567, 113 (2019). https://doi.org/10.1016/j.physb.2018.11.040

    Article  ADS  Google Scholar 

  21. Q.S. Zhu, R.J. Tang, F. Peng, S.C. Xu, G.Q. Liang, R. Zhao, Y. Fang, L. You, X.D. Su, Phys. Rev. Appl. 16, 054006 (2021). https://doi.org/10.1103/PhysRevApplied.16.054006

    Article  ADS  Google Scholar 

  22. Z.B. Li, Y. Li, Z.X. Zhang, Y.L. Liu, Y.F. Li, X.F. Zhang, AIP Adv. 9, 075109 (2019). https://doi.org/10.1063/1.5097271

    Article  ADS  Google Scholar 

  23. Y.B. Dong, L. Zhu, B. Yin, X.R. Zhu, D.F. Li, Dalton T. 50, 17328 (2021). https://doi.org/10.1039/d1dt02925h

    Article  Google Scholar 

  24. Z.F. Shang, M. Yue, Y.Q. Li, D.T. Zhang, Z.H. Xie, Y.Q. Wang, J. Magn. Magn. Mater. 502, 166484 (2020). https://doi.org/10.1016/j.jmmm.2020.166484

    Article  Google Scholar 

  25. C. Vivès, J. Cryst. Growth 173, 541 (1997). https://doi.org/10.1016/S0022-0248(96)01051-2

    Article  ADS  Google Scholar 

  26. J.A. Gavira, J.M. Garcia-Ruiz, Cryst. Growth Des. 9, 2610 (2009). https://doi.org/10.1021/cg8008688

    Article  Google Scholar 

  27. L. Hu, X.Y. Feng, L.Z. Wei, K.J. Zhang, J.M. Dai, Y.C. Wu, Q.Q. Chen, Nanoscale 7, 10925 (2015). https://doi.org/10.1039/c5nr02498f

    Article  ADS  Google Scholar 

  28. M.Y. Zhu, Y.M. Hu, Y. Li, H.M. Jin, Z.Z. Zhu, Phys. Stat. Sol. C 9, 122 (2012). https://doi.org/10.1002/pssc.201084200

    Article  Google Scholar 

  29. D. Hippo, Y. Nakamine, K. Urakawa, Y. Tsuchiya, H. Mizuta, N. Koshida, S. Oda, JPN. J. Appl. Phys. 47, 7398 (2008). https://doi.org/10.1143/JJAP.47.7398

    Article  ADS  Google Scholar 

  30. S. Xiong, Q. Wang, Y. Chen, J. Appl. Polym. Sci. 111, 963 (2010). https://doi.org/10.1002/app.29096

    Article  Google Scholar 

  31. I.A. Kalinin, A.D. Davydov, K.S. Napolskii, A. Sobolev, M. Shatalov, M. Zinigrad, D. Bograchev, Electrochem. Commun. 149, 107469 (2023). https://doi.org/10.1016/j.elecom.2023.107469

    Article  Google Scholar 

  32. Y.S. Li, N.J. Zhou, X. He, S. Zhang, D.Z. Zhu, Z.J. Ma, A.C.S. Appl, Electron. Mater. 5, 155 (2023). https://doi.org/10.1021/acsaelm.2c01179155

    Article  ADS  Google Scholar 

  33. L.F. Wei, Z.L. Zhao, J.J. Gao, K. Cui, J. Electrochem. Soc. Electrochem. Soc. 164, E332 (2017). https://doi.org/10.1149/2.0831712jes

    Article  Google Scholar 

  34. K. Cui, L. Yuan, Z. Zhao, Mat. Sci. Eng. B 290, 116330 (2023). https://doi.org/10.1016/j.mseb.2023.116330

    Article  Google Scholar 

  35. K. Cui, L. Yuan, Z. Zhao, J. Magn. Magn. Mater. 563, 169972 (2022). https://doi.org/10.1016/j.jmmm.2022.169972

    Article  Google Scholar 

  36. K. Cui, Z.L. Zhao, W.B. Liu, Electroanal. Chem.. Chem. 865, 114146 (2020). https://doi.org/10.1016/j.jelechem.2020.114146

    Article  Google Scholar 

  37. K. Cui, Z.L. Zhao, Y. Tie, C. Li, L.F. Wei, Mater. Chem. Phys.. Chem. Phys. 281, 125957 (2022). https://doi.org/10.1016/j.matchemphys.2022.125957

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from the Natural Science Foundation of Henan Province (No. 232300421321) and Natural Science Basic Research Program of Shaanxi (No. 2021JZ-10).

Author information

Authors and Affiliations

Authors

Contributions

KC: conceptualization, methodology, supervision, writing-original draft preparation. YC, YY and GS: visualization, investigation, validation. ZZ: writing—review and editing, funding acquisition, HL: writing—review and editing, supervision.

Corresponding author

Correspondence to Kai Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, K., Cao, Y., Yang, Y. et al. Enhancing magnetic properties of Ni3Si/Fe3O4@PVDF composites via lamellar Ni3Si template fabrication under pulsed magnetic fields. Appl. Phys. A 129, 729 (2023). https://doi.org/10.1007/s00339-023-07018-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07018-w

Keywords

Navigation