Skip to main content
Log in

Phase-field crystal simulation of tilt grain boundary evolution under tensile deformation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The grain boundary (GB) migration and dislocation movement are the basic mechanisms of deformation and strengthening of alloys. The migration of circular and asymmetric tilt GB initiated from the dislocation movement during tensile deformation was investigated by phase-field crystal simulation. It is shown that the migration of circular GB is performed by dislocation slipping, accompanying by the rotation and tensile deformation of the circular grain. The dislocation dissociation and slipping realize the migration of low-angle asymmetric tilt GB. Additionally, the dislocation dissociation generates new grains with different orientations, then the new grains merge with the annihilation of dislocations. For high-angle asymmetric tilt GB, the migration mechanism is dislocation emission and slipping. The generation or merging of new grains reduces the misorientation of grains for low-angle asymmetric tilt GB. The formation of new grains at low-angle asymmetric tilt GB is caused by the dislocations dissociation, while the emission of dislocations generates the new grains in high-angle asymmetric tilt GB. The studies reveal the mechanisms of GB migration and grains reproduction by the dislocation slipping and reactions under the tensile deformation at the atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. C.Y. Hu, C.J. He, X.L. Gan, X.L. Wan, F. Hu, W. Zhou et al., Probing the impact of grain interior and grain boundaries on the mechanical behavior of a high-Mn austenitic steel. J. Mater. Res. Technol. 21, 5098–5110 (2022)

    Google Scholar 

  2. X. Zhou, X.Y. Li, K. Lu, Size dependence of grain boundary migration in metals under mechanical loading. Phys. Rev. Lett. 122, 126101 (2019)

    ADS  Google Scholar 

  3. J.L. Dequiedt, Slip system activity in gradient enhanced crystal plasticity: Grain boundary modelling and bi-crystal response. Int. J. Solids Struct. 225, 111057 (2021)

    Google Scholar 

  4. P.C. Millett, R.P. Selvam, A. Saxena, Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54, 297–303 (2006)

    ADS  Google Scholar 

  5. J. Mikula, S.P. Joshi, T.E. Tay, R. Ahluwalia, S.S. Quek, A phase field model of grain boundary migration and grain rotation under elasto-plastic anisotropies. Int. J. Solids Struct. 178, 1–18 (2019)

    Google Scholar 

  6. R. Kirchheim, Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413–419 (2002)

    ADS  Google Scholar 

  7. X.L. Chen, T. Richeton, C. Motz, S. Berbenni, Elastic fields due to dislocations in anisotropic bi- and tri-materials: applications to discrete dislocation pile-ups at grain boundaries. Int. J. Solids Struct. 164, 141–156 (2019)

    Google Scholar 

  8. Y.J. Gao, L.L. Huang, Q.Q. Deng, W.Q. Zhou, Z.R. Luo, K. Lin, Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Mater. 117, 238–251 (2016)

    ADS  Google Scholar 

  9. Y.J. Gao, Y.J. Lu, L.Y. Kong, Q.Q. Deng, L.L. Huang, Z.R. Luo, Phase field crystal model and its application for microstructure evolution of materials. Acta Metall. Sin. 54, 278–292 (2017)

    Google Scholar 

  10. K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    ADS  Google Scholar 

  11. N. Provatas, J.A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld et al., Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. JOM 59, 83–90 (2007)

    Google Scholar 

  12. P. Stefanovic, M. Haataja, N. Provatas, Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 80, 046107 (2009)

    ADS  Google Scholar 

  13. J. Berry, M. Grant, K.R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions. Phys. Rev. E 73, 031609 (2006)

    ADS  Google Scholar 

  14. X.L. Tian, Y.H. Zhao, D.W. Peng, Q.W. Guo, Z. Gou, H. Hou, Phase-field crystal simulation of evolution of liquid pools in grain boundary pre-melting regions. T. Nonfer. Metal. Soc. 31, 1175–1188 (2021)

    Google Scholar 

  15. A. Adland, A. Karma, R. Spatschek, D. Buta, M. Asta, Phase-field-crystal study of grain boundary premelting and shearing in bcc iron. Phys. Rev. B 87, 024110 (2013)

    ADS  Google Scholar 

  16. Y.L. Lu, H. Mu, H.X. Hou, Z. Chen, Phase field crystal simulation for the premelting and melting of grain boundary. Acta Metall. Sin. 49, 358–364 (2013)

    Google Scholar 

  17. M.A. Choudhary, J. Kundin, H. Emmerich, Misfit and dislocation nucleation during heteroepitaxial growth. Comput. Mater. Sci. 83, 481–487 (2014)

    Google Scholar 

  18. Y.L. Lu, T.H. Zhang, Z. Chenn, Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model. Superlattices Microstruct. 118, 275–283 (2018)

    ADS  Google Scholar 

  19. J. Zhang, Z. Chen, C. Cheng, A phase field crystal model simulation of morphology evolution and misfit dislocation generation in nanoheteroepitaxy. Mod. Phys. Lett. B 31, 1750283 (2017)

    ADS  Google Scholar 

  20. S. Hu, S. Wang, The influences of crystal orientation and crack interaction on the initiation of growth and propagation mode of microcrack: a phase-field-crystal study. Physica B. Condens. Matter. 552, 104–109 (2019)

    ADS  Google Scholar 

  21. S. Hu, Z. Chen, W. Xi, Y.Y. Peng, Phase-field-crystal study on the evolution behavior of microcracks initiated on grain boundaries under constant strain. J. Mater. Sci. 52, 5641–5651 (2017)

    ADS  Google Scholar 

  22. C. Guo, J.C. Wang, J.J. Li, Z.J. Wang, Y.H. Huang, J.W. Gu et al., Coupling eutectic nucleation mechanism investigated by phase field crystal model. Acta Mater. 145, 175–185 (2018)

    ADS  Google Scholar 

  23. A. Yamanaka, K. McReynolds, P.W. Voorhees, Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal. Acta Mater. 133, 160–171 (2017)

    ADS  Google Scholar 

  24. S. Tang, Y.M. Yu, J. Wang, Phase-field-crystal simulation of nonequilibrium crystal growth. Phys. Rev. E 89, 012405 (2014)

    ADS  Google Scholar 

  25. Z. Chen, Z.Y. Wang, X.R. Gu, Y.F. Chen, L.M. Hao, J. de Wit et al., Phase-field crystal simulation facet and branch crystal growth. Appl. Phys. A 124, 1–8 (2018)

    Google Scholar 

  26. P. Stefanovic, M. Haataja, N. Provatas, Phase-field crystals with elastic interactions. Phys. Rev. Lett. 96, 225504 (2016)

    ADS  Google Scholar 

  27. T. Hirouchi, T. Takaki, Y. Tomita, Development of numerical scheme for phase field crystal deformation simulation. Comput. Mater. Sci. 44, 1192–1197 (2009)

    Google Scholar 

  28. A. Jaatinen, T. Ala-Nissila, Eighth-order phase-field-crystal model for two-dimensional crystallization. Phys. Rev. E 82, 061602 (2010)

    ADS  Google Scholar 

  29. K.A. Wu, A. Adland, A. Karma, Phase-field-crystal model for fcc ordering. Phys. Rev. E 81, 061601 (2010)

    ADS  Google Scholar 

  30. K.R. Elder, Z.F. Huang, N. Provatas, Amplitude expansion of the binary phase-field-crystal model. Phys. Rev. E 81, 011602 (2010)

    ADS  Google Scholar 

  31. N. Goldenfeld, B.P. Athreya, J.A. Dantzig, Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model. Phys. Rev. E 72, 020601 (2005)

    ADS  Google Scholar 

  32. G. Vetterick, A.C. Leff, M. Marshall, Direct observation of a coincident dislocation-and grain boundary-mediated deformation in nanocrystalline iron. Mater. Sci. Eng. A 709, 339–348 (2018)

    Google Scholar 

  33. X.N. Wang, H.B. Zhang, S.N. Yan, Y.M. Zhang, X.L. Tian, D.W. Peng, Y.H. Zhao, The response mechanism of crystal orientation to grain boundary dislocation under uniaxial strain: a phase-field-crystal study. Metals 12, 712 (2022)

    Google Scholar 

  34. Y.H. Zhao, K.X. Liu, H.B. Zhang, X.L. Tian, Q. Jiang, Dislocation motion in plastic deformation of nanopolycrystalline metal materials: a phase field crystal method study. Adv. Compos. Hybrid Mater. 5, 2546–2566 (2022)

    Google Scholar 

  35. J. Berry, K.R. Elder, M. Grant, Melting at dislocations and grain boundaries: a phase field crystal study. Phys. Rev. B 77, 224114 (2008)

    ADS  Google Scholar 

  36. K. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    ADS  Google Scholar 

  37. H. Ren, X. Zhuang, N.T. Trung, T. Rabczuk, Nonlocal operator method for the Cahn-Hilliard phase field model. Commun. Nonlinear Sci. 96, 105687 (2021)

    MathSciNet  MATH  Google Scholar 

  38. H. Ren, X. Zhuang, T. Rabczuk, A higher order nonlocal operator method for solving partial differential equations. Comput. Methods Appl. M 367, 113132 (2020)

    MathSciNet  MATH  Google Scholar 

  39. K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75, 064107 (2007)

    ADS  Google Scholar 

  40. L.Q. Chen, J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998)

    ADS  MATH  Google Scholar 

  41. T. Takaki, Y. Tomita, Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity. Int. J. Mech. Sci. 52, 320–328 (2010)

    Google Scholar 

  42. M. Meyers, A. Mishra, D. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)

    Google Scholar 

  43. W.D. Callister, Fundamentals of Materials Science and Engineering, 5th edn. (Wiley, London, 2000)

    Google Scholar 

  44. L. Capolungo, D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, K.I. Jacob, Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation. J. Mech. Phys. Solids 55, 2300–2327 (2007)

    ADS  MATH  Google Scholar 

  45. S. Hu, Z. Chen, G.G. Yu, W. Xi, Y.Y. Peng, Phase-field-crystal study on the reaction mechanisms of opposite sign edge dislocations appearing in the deformation processes of asymmetric tilt sub-grain boundary system. Comput. Mater. Sci. 124, 195–203 (2016)

    Google Scholar 

  46. S. Muhammad, Y.S. Li, Z.W. Yan, Phase-field crystal modeling of crystal growth patterns with competition of undercooling and atomic density. Phys. Chem. Chem. Phys. 22, 21858–21871 (2020)

    Google Scholar 

  47. T.C. Lee, I.M. Robertson, H.K. Birnbaum, Anomalous slip in an FCC system. Ultramicroscopy 29, 212–216 (1989)

    Google Scholar 

  48. E.J. Mittemeijer, Fundamentals of Materials Science, 2nd edn. (Springer, Berlin, 2010)

    Google Scholar 

  49. K.S. Ng, A.H.W. Ngan, Deformation of micron-sized aluminium bi-crystal pillars. Philos. Mag. 89, 3013–3026 (2009)

    ADS  Google Scholar 

  50. Y.B. Wang, B. Wu, M.L. Sui, Dynamical dislocation emission processes from twin boundaries. Appl. Phys. Lett. 93, 041906 (2008)

    ADS  Google Scholar 

  51. L.H. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, Tracking the sliding of grain boundaries at the atomic scale. Science 375, 1261–1265 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the National Natural Science Foundation of China (No. 52275342) and the Fundamental Research Funds for the Central Universities (No. 30921013107).

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Investigation, Data analysis and interpretation of results, Methodology. WZ: Data curation, Writing-original draft; SM: Data curation, Formal analysis; PS: Investigation, Formal analysis; YS: Investigation, Data Curation; YL: Conceptualization, Funding acquisition, Resources, Writing-review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongsheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhao, W., Muhammad, S. et al. Phase-field crystal simulation of tilt grain boundary evolution under tensile deformation. Appl. Phys. A 129, 734 (2023). https://doi.org/10.1007/s00339-023-07007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07007-z

Keywords

Navigation