Skip to main content
Log in

Ion-gated tungsten oxide based electrochemical transistors with subthreshold slopes approaching the thermodynamic limit

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrochemical transistors (ECTs) are switches that are controlled by ionic gating, and find emerging applications in electronic devices and chemical sensors. In this paper, we fabricate microscale tungsten oxide (WOx) ECTs and study their subthreshold characteristics. We optimize the film deposition process to produce WOx films with various oxygen concentrations, and investigate their physical and chemical properties. We employ transparent amorphous WO3 films as the channel material for ECTs, and experimentally investigate their subthreshold behaviors by injecting different metal ions in electrolytes. In addition, we explore the dynamic response of the WO3 ECT. Gated by cation intercalation, we find that these WO3 ECTs can obtain a subthreshold slope as low as 60 mV/dec at room temperature, approaching the same thermodynamic limit as field-effect transistors. The material and device strategies provide a route to realizing future computing and sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (Xing Sheng) upon reasonable request.

References

  1. G.E. Moore, Cramming more components onto integrated circuits (reprinted from Electronics, pp. 114–117, April 19, 1965) [J]. Proc. IEEE 86(1), 82–85 (1998)

    Article  Google Scholar 

  2. R.H. Dennard, F.H. Gaensslen, H.N. Yu et al., Design of ion-implanted Mosfet’s with very small physical dimensions (reprinted from IEEE Journal of Solid-State Circuits, Vol 9, pp. 256–268, 1974) [J]. Proc. IEEE 87(4), 668–678 (1999)

    Article  Google Scholar 

  3. R. Feynman, There’s Plenty of Room at the Bottom [M] (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  4. J.-A. Carballo, W.-T.J. Chan, P.A. Gargini, et al., Itrs 2.0: toward a re-framing of the semiconductor technology roadmap, in Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD), Seoul, SOUTH KOREA, F 2014 Oct 19–22, 2014 [C] (2014)

  5. D. Hisamoto, W.C. Lee, J. Kedzierski et al., FinFET—a self-aligned double-gate MOSFET scalable to 20 Nm [J]. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)

    Article  ADS  Google Scholar 

  6. B. Yu, L.L. Chang, S. Ahmed, et al., FinFET scaling to 10 nm gate length, in Proceedings of the IEEE International Electron Devices Meeting, San Francisco, Ca, F 2002 Dec 08–11, 2002 [C] (2002)

  7. Y.C. Huang, M.H. Chiang, S.J. Wang et al., GAAFET versus pragmatic FinFET at the 5 nm Si-based CMOS technology node [J]. IEEE J. Electron Devices Soc. 5(3), 164–169 (2017)

    Article  Google Scholar 

  8. D. Yakimets, G. Eneman, P. Schuddinck et al., Vertical GAAFETS for theu CMOS scaling [J]. IEEE Trans. Electron Devices 62(5), 1433–1439 (2015)

    Article  ADS  Google Scholar 

  9. I. Ferain, C.A. Colinge, J.P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors [J]. Nature 479(7373), 310–316 (2011)

    Article  ADS  Google Scholar 

  10. M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors [J]. Nat. Rev. Mater. 1(11), 1–15 (2016)

    Article  Google Scholar 

  11. R. Baughman, L. Shacklette, R. Elsenbaumer, E. Plichta, C. Becht, Conducting polymer electromechanical actuators, in Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics (1990), pp. 559–582. https://doi.org/10.1007/978-94-009-2041-5

  12. D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater.Funct. Mater. 17(17), 3538–3544 (2007). https://doi.org/10.1002/adfm.200601239

    Article  Google Scholar 

  13. J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren, G.G. Malliaras, Organic electrochemical transistors. Nat. Rev. Mater. 3(2), 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86

    Article  ADS  Google Scholar 

  14. S. Balendhran et al., Field effect biosensing platform based on 2D α-MoO3. ACS Nano 7(11), 9753–9760 (2013). https://doi.org/10.1021/nn403241f

    Article  Google Scholar 

  15. M. Kaisti, Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017). https://doi.org/10.1016/j.bios.2017.07.010

    Article  Google Scholar 

  16. S. Hong et al., FET-type gas sensors: a review. Sens. Actuators B Chem. 330, 129240 (2021). https://doi.org/10.1016/j.snb.2020.129240

    Article  Google Scholar 

  17. J. Zhang, L. Liu, Y. Yang, Q. Huang, D. Li, D. Zeng, A review on two-dimensional materials for chemiresistive-and FET-type gas sensors. Phys. Chem. Chem. Phys. 23(29), 15420–15439 (2021). https://doi.org/10.1039/D1CP01890F

    Article  Google Scholar 

  18. L. Torsi, M. Magliulo, K. Manoli, G. Palazzo, Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42(22), 8612–8628 (2013). https://doi.org/10.1039/C3CS60127G

    Article  Google Scholar 

  19. C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022). https://doi.org/10.1021/acs.chemrev.1c00924

    Article  Google Scholar 

  20. C.-S. Lee, S.K. Kim, M. Kim, Ion-sensitive field-effect transistor for biological sensing. Sensors 9(9), 7111–7131 (2009). https://doi.org/10.3390/s90907111

    Article  ADS  Google Scholar 

  21. J.-P. Colinge, Subthreshold slope of thin-film SOI MOSFET’s. IEEE Electron Device Lett. 7(4), 244–246 (1986). https://doi.org/10.1109/EDL.1986.26359

    Article  ADS  Google Scholar 

  22. K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q, in Digest. International Electron Devices Meeting (IEEE, 2002), pp. 289–292. https://doi.org/10.1109/IEDM.2002.1175835

  23. W.Y. Choi, B.-G. Park, J.D. Lee, T.-J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007). https://doi.org/10.1109/LED.2007.901273

    Article  ADS  Google Scholar 

  24. G.A. Salvatore, L. Lattanzio, D. Bouvet, I. Stolichnov, N. Setter, A.M. Ionescu, Ferroelectric transistors with improved characteristics at high temperature. Appl. Phys. Lett. 97(5), 053503 (2010). https://doi.org/10.1063/1.3467471

    Article  ADS  Google Scholar 

  25. Q. Huang, R. Huang, Y. Pan, S. Tan, Y. Wang, Resistive-gate field-effect transistor: a novel steep-slope device based on a metal—insulator—metal—oxide gate stack. IEEE Electron Device Lett. 35(8), 877–879 (2014). https://doi.org/10.1109/LED.2014.2327219

    Article  ADS  Google Scholar 

  26. V. Venkatraman et al., Subthreshold operation of organic electrochemical transistors for biosignal amplification. Adv. Sci. 5(8), 1800453 (2018). https://doi.org/10.1002/advs.201800453

    Article  Google Scholar 

  27. J.T. Yang et al., Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 30(34), 1801548 (2018). https://doi.org/10.1002/adma.201801548

    Article  Google Scholar 

  28. M.S. Barbosa, N. Balke, W.-Y. Tsai, C. Santato, M.O. Orlandi, Structure of the electrical double layer at the interface between an ionic liquid and tungsten oxide in ion-gated transistors. J. Phys. Chem. Lett. 11(9), 3257–3262 (2020). https://doi.org/10.1021/acs.jpclett.0c00651

    Article  Google Scholar 

  29. K. Patel, C. Panchal, V. Kheraj, M. Desai, Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films. Mater. Chem. Phys. 114(1), 475–478 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.071

    Article  Google Scholar 

  30. O.Y. Khyzhun, XPS, XES and XAS studies of the electronic structure of tungsten oxides. J. Alloys Compd. 305(1–2), 1–6 (2000). https://doi.org/10.1016/S0925-8388(00)00697-6

    Article  Google Scholar 

  31. A.V. Pervikov, M. Krinitcyn, E.A. Glazkova, N.G. Rodkevich, M.I. Lerner, Synthesis of tungsten carbide from bimodal tungsten powder produced by electrical explosion of wire. Int. J. Refract Metal Hard Mater. 103, 105733 (2022). https://doi.org/10.1016/j.ijrmhm.2021.105733

    Article  Google Scholar 

  32. D. Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power. Sources 115(1), 171–178 (2003). https://doi.org/10.1016/S0378-7753(02)00718-8

    Article  Google Scholar 

  33. M. Anderson, S.K. Hurst, Platinum stacking interactions in homoleptic platinum polymers. Eur. J. Inorg. Chem. 2009(21), 3041–3054 (2009). https://doi.org/10.1002/ejic.200900225

    Article  Google Scholar 

  34. M.H. Park, J.H. Li, A. Kumar, G. Li, Y. Yang, Doping of the metal oxide nanostructure and its influence in organic electronics. Adv. Funct. Mater.Funct. Mater. 19(8), 1241–1246 (2009). https://doi.org/10.1002/adfm.200801639

    Article  Google Scholar 

Download references

Funding

This work is supported by Tsinghua University Initiative Scientific Research Program (20211080065), Beijing Municipal Natural Science Foundation (Z220015) and National Natural Science Foundation of China (NSFC) (52272277).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KZ and XS; methodology, KZ, WZ and XS; writing—original draft preparation, KZ; writing—review and editing, XS; supervision, XS; project administration, XS; funding acquisition, XS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xing Sheng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhao, W. & Sheng, X. Ion-gated tungsten oxide based electrochemical transistors with subthreshold slopes approaching the thermodynamic limit. Appl. Phys. A 129, 728 (2023). https://doi.org/10.1007/s00339-023-07005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07005-1

Keywords

Navigation