Skip to main content
Log in

Critical behavior and magnetocaloric simulation of La0.7Ba0.2Ca0.1Mn1–xSnxO3 near room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we focus on the critical behavior of La0.7Ba0.2Ca0.1Mn1–xSnxO3 samples (x = 0.00 and 0.01) around the PM-FM phase transition by measuring the magnetization M (µ0H) versus magnetic field. The study is based on an iterative process using modified Arrott plots. We then use other techniques to confirm the critical parameters obtained for our manganites, such as the Kouvel-Fisher (KF) method and the critical isotherm (CI) around Tc. Our samples are characterized by a second-order phase transition. The critical parameters determined (β, γ and δ) have no known universal classes. Moreover, Widom’s scaling formula δ = 1 + γ/β, demonstrates the accuracy of the critical exponent parameters. In addition, we employ the scaling equation \(\mathrm{M}\left(\mathrm{H},\varepsilon \right)= {\varepsilon }^{\beta }{f}_{\pm }\left(\frac{H}{{\varepsilon }^{\beta +\gamma }}\right)\) with ε = (TTC)/TC to further verify the reasonableness of the critical exponent in which the curves (M-µ0H-T) split into two distinct branches under and over the TC. Furthermore, the simulated M (H, T) plots were generated to determine the −∆SM (T) plots; according to the Gibbs free energy within the obtained critical exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Bouzidi, M.A. Gdaiem, J. Dhahri, E.K. Hlil, Critical behavior near room temperature in La0.75Ca0.05Na0.20MnO3 sample. RSC Adv. 9, 13808 (2019)

    ADS  Google Scholar 

  2. S. Banik, I. Das, Effect of A-site ionic disorder on magnetocaloric properties in large band width manganite systems. J. Alloy Comp. 248, 742 (2018)

    Google Scholar 

  3. A. Belkahla, K. Cheri, J. Dhahri, E.K. Hlil, Magnetic, magnetocaloric properties, and critical behavior in a layered perovskite La1.4(Sr0.95Ca0.05)1.6Mn2O7. J. Mater. Sci. 51, 7636–7651 (2016)

    ADS  Google Scholar 

  4. Y. Su, Y. Sui, J.G. Cheng, J.S. Zhou, X. Wang, Y. Wang, J.B. Goodenough, Critical behavior of the ferromagnetic perovskites RTiO3 (R= Dy, Ho, Er, Tm, Yb) by magnetocaloric measurements. Phys. Rev. B Condens. Matter Mater. Phys. 87, 195102 (2013)

    ADS  Google Scholar 

  5. A. Elhamza, S.E.L. Kossi, J. Dhahri, E.K. Hlil, M.A. Zaidi, H. Belmabrouk, Estimating spontaneous magnetization from mean field analysis and critical exponents study in La0.6Sr0.4Mn0.9Al0.1O3 compound. J. Magn. Magn. Mater. 460, 480 (2018)

    ADS  Google Scholar 

  6. G. Jagadish Kumar et al., Observation of Griffiths phase, critical exponent analysis and high magnetocaloric effect near room temperature at low magnetic field in V-doped La0.7Sr0.3MnO.3. J. Phys. D Appl. Phys. 55, 215001 (2022)

    ADS  Google Scholar 

  7. M. Oumezzine, E.K. Hlil, Critical exponent analysis and evidence of long-range ferromagnetic order in lightly Pr-doped nanocrystalline (La1–x Prx)0.67 Ba0.33 MnO3 (x = 0.15 and 0.22) manganites. J. Low Temp. Phys. 201, 406–417 (2020)

    ADS  Google Scholar 

  8. A. Mabrouki et al., Oxygen deficiency effect on the magnetocaloric and critical phenomena for La0.8□0.2MnO3-Δ (Δ = 0, 0.1 and 0.2) compounds: significant enhancement of relative cooling power. J. Mater. Sci. Mater. Electron. 31, 22749–22767 (2020)

    Google Scholar 

  9. M. Abassi, Z. Mohamed, J. Dhahri, E.K. Hlil, Short-range ferromagnetic order in perovskite manganite La0.62Er0.05Ba0.33Mn0.95Fe0.05O3. J. Alloys Compound. 664, 657–663 (2016)

    Google Scholar 

  10. R. Rao, Y.Y. Han, X.C. Kan, X. Zhang, M. Wang, N.X. Qian, G.H. Zheng, Y.Q. Ma, Magnetic property under the pressure and electrical transport behavior under the magnetic field for the perovskite manganite La0.7Ca0.3MnO3. J. Alloys Compound. 837, 155476–8 (2020)

    Google Scholar 

  11. Y. Ounza, M. Bouhbou, M. Oubla, M. Moutataouia, M. Lamire, E.K. Hlil, H. Lassri, Magnetic, magnetocaloric, and critical exponent properties of layered perovskite La1.1Bi0.3Sr1.6Mn2O7 prepared by coprecipitation method. J. Supercond. Novel Magn. 33, 3791–3798 (2020)

    Google Scholar 

  12. M. Oumezzine, O. Peña, S. Kallel, M. Oumezzine, Crossover of the magnetocaloric effect and its importance on the determination of the critical behaviour in the La0.67Ba0.33Mn0.9Cr0.1O3 perovskite manganite. J. Alloys Compound. 539, 116–123 (2012)

    Google Scholar 

  13. A. Ben Jazia Kharrat, K. Khirouni, W. Boujelben, Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route. Phys. Lett. A 382, 3435–3448 (2018)

    ADS  Google Scholar 

  14. S. Bouzidi, M. Dhahri, J. Dhahri, E.K. Hlil, Universal critical behavior in polycrystalline La0.75Ca0.25-xNaxMnO3 (x = 0.00; 0.05) samples. Eur. Phys. J. Plus 23, 1–14 (2021)

    Google Scholar 

  15. R. Venkatesh, M. Pattabiraman, S. Angappane, G. Rangarajan, K. Sethupathi, J. Karatha, M. Fecioru-Morariu, R.M. Ghadimi, G. Guntherodt, Complex ferromagnetic state and magnetocaloric effect in single crystalline Nd0.7Sr0.3MnO3. Phys. Rev. B 75, 224415 (2007)

    ADS  Google Scholar 

  16. W. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, K. GlazyrinIs, A Griffiths phase a prerequisite for colossal magnetoresistance? Phys. Rev. Lett. 99, 177203 (2007)

    ADS  Google Scholar 

  17. A.K. Pramanik, A. Banerjee, Critical behavior at paramagnetic to ferromagnetic phase transition in Pr 0.5 Sr 0.5 MnO3: a bulk magnetization study. Phys Rev. B 79, 214426 (2009)

    ADS  Google Scholar 

  18. V.S. Amaral, J.S. Amaral, Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J. Magn. Magn. Mater. 272, 2104 (2004)

    ADS  Google Scholar 

  19. R. Hamdi, A. Tozri, E. Dhahri, Bessais, Magnetocaloric properties and Landau theory of Dy0.5 (Sr1−xCax)0.5 MnO3 (0≤ x≤ 0.3) manganites at cryogenic temperatures. Chem. Phys. Lett. 680, 94–100 (2017)

    ADS  Google Scholar 

  20. Y. Sun, X.J. Xu, Y.H. Zhang, Large magnetic entropy change in the colossal magnetoresistance material La2/3Ca1/3MnO3. J. Magn. Magn. Mater. 219, 183 (2000)

    ADS  Google Scholar 

  21. T. Tang, K.M. Gu, Q.Q. Cao, D.H. Wang, S.Y. Zhang, Y.W. Du, Magnetocaloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 222, 110 (2000)

    ADS  Google Scholar 

  22. M.H. Phan, S.B. Tian, S.C. Yu, A.N. Ulyanov, Magnetic and magnetocaloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J. Magn. Magn. Mater. 256, 306 (2003)

    ADS  Google Scholar 

  23. M.R. Laouyenne, M. Baazaoui, S. Mahjoub, W. Cheikhrouhou Koubaa, M. Oumezzine, Enhanced magnetocaloric effect with the high tunability of bismuth in La0.8Na0.2Mn1−xBixO3 (0 ≤ x ≤ 0.06) perovskite manganites. J. Alloys Compound. 720, 212–220 (2017)

    Google Scholar 

  24. A. Bouzid, A. Essoumhi, A.M. Rostas, A.C. Kuncser, C.C. Negrila, N. Iacob, A. Galatanu, B. Popescu, M. Sajieddine, A.C. Galca, V. Kuncser, Enhanced magnetocaloric properties of La0.8K0.2-xPbxMnO3 nanoparticles by optimizing Pb doping concentrations. Ceramics Int. 48, 16845–16860 (2022)

    Google Scholar 

  25. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, High magnetoresistance in La0.5Nd0.15Ca0.25A0.1MnO3 (A = Ca, Li, Na, K) CMR manganites: correlation between their magnetic and electrical properties. Mater. Res. Bull. 125, 110813 (2020)

    Google Scholar 

  26. A. Ghasemi, M.R. Loghman-Estarki, S. Torkian, M. Tavoosi, The microstructure and magnetic behavior of spark plasma sintered iron/ nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method. Compos. Part B 175, 107179 (2019)

    Google Scholar 

  27. S. Yang, Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang, J. Ma, Silver addition in polycrystalline La0.7Ca0.3MnO3: large magnetoresistance and anisotropic magnetoresistance for manganite sensors. J. Alloys Compound. 882, 160719 (2021)

    Google Scholar 

  28. I. Raya et al., Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys. Chinese Phys. B 31, 01640 (2022)

    Google Scholar 

  29. M.M. Forushani et al., Effect of multi-wall carbon nanotubes/strontium ferrite nanoparticles on the microstructure, phase, magnetic and electromagnetic behavior of carbon aerogel composites. J. Mater. Res. Technol. 23, 3424–3440 (2023)

    Google Scholar 

  30. M.M. Forushani, Lightweight cellulose/MWCNT/SrFe12O19 aerogel composites: microstructure, density, mechanical properties, and electromagnetic behavior. Cellulose 30, 5707–5729 (2023)

    Google Scholar 

  31. R.G. Ghartavool et al., Synthesis, microstructure, magnetic and electromagnetic behavior of graphene oxide/ hexagonal barium ferrite aerogel nanocomposites within the frequency range of 1–18 GHz. Arab. J. Chem. 16, 105099 (2023)

    Google Scholar 

  32. G.R. Gordani et al., The effects of strontium ferrite micro-and nanoparticles on the microstructure, phase, magnetic properties, and electromagnetic waves absorption of graphene oxide-SrFe12O19-SiC aerogel nanocomposite. J. Magn. Magn. Mater. 545, 168667 (2022)

    Google Scholar 

  33. Y. Li, H. Zhang, Q. Chen, D. Li, Z. Li, Y. Zhang, Effects of A-site cationic radius and cationic disorder on the electromagnetic properties of La0.7Ca0.3MnO3 ceramic with added Sr, Pb, and Ba. Ceramics Int. 44, 5378–5384 (2018)

    Google Scholar 

  34. A.B.J. Kharrat, M. Bourouina, N. Chniba-Boudjada, W. Boujelben, Critical behaviour of Pr0.5-xGdxSr0. 5MnO3 (0≤ x ≤ 0.1) manganite compounds: Correlation between experimental and theoretical considerations. Solid State Sci. 87, 27 (2019)

    ADS  Google Scholar 

  35. J. Dhahri, S. Mnefgui, A. Ben Hassine, T. Tahri, M. Oumezzine, E.K. Hlil, Behavior of the magnetocaloric effect in La0.7Ba0.2Ca0.1Mn1-xSnxO3 manganite oxides as promising candidates for magnetic refrigeration. Phys. B Condens. Matter 537, 93 (2018)

    ADS  Google Scholar 

  36. J. Yang, Y.P. Lee, Critical behavior in Ti-doped manganites LaMn1− xTixO3 (0.05⩽ x⩽ 0.2). Appl. Phys. Lett. 91, 142512 (2007)

    ADS  Google Scholar 

  37. Y.K. Fu, X. Luo, Z.H. Huang, L. Hu, W.J. Lu, B.C. Zhao, Y.P. Sun, Critical behavior of spinel vanadate MnV1.95Al0.05O4. J. Magn. Magn. Mater. 326, 205–209 (2013)

    ADS  Google Scholar 

  38. H.E. Stanley, Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys 71, 358–366 (1999)

    Google Scholar 

  39. H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Size reduction effect on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.9Sr0.1MnO3 nanoparticles. Solid State Commun. 208, 45–52 (2015)

    ADS  Google Scholar 

  40. S.K. Banerjee, On a generalised approach to first and second order magnetic transitions. J. Phys. Lett. 12, 16 (1964)

    ADS  Google Scholar 

  41. A. Arrott, J.E. Noakes, Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786–1967 (1967)

    ADS  Google Scholar 

  42. S.N. Kaul, Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5 (1985)

    ADS  Google Scholar 

  43. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  44. M.K. Hamada, Y. Maswadeh, K.A. Ziq, Effects of Ni substitutions on the critical behaviors in Nd0.6Sr0.4Mn1−xNixO3 manganite. J. Magn. Magn. Mater. 491, 165609 (2019)

    Google Scholar 

  45. A. Herrero, A. Oleaga, A. Provino, I.R. Aseguinolaza, A. Salazar, D. Peddis, P. Manfrinetti, Crystallographic, magnetic and magnetocaloric properties in novel intermetallic materials R3CoNi (R = Tb, Dy, Ho, Er, Tm, Lu). J. Alloy. Compd. 865, 158948 (2021)

    Google Scholar 

  46. M. Ciomaga Hatnean, G. Balakrishnan, Three-dimensional Ising critical behavior in R0.6Sr0.4MnO3 (R = Pr, Nd) manganites. Phys. Rev. B 92, 024409–8 (2015)

    ADS  Google Scholar 

  47. K. Ramesh Kumar, Harikrishnan S. Nair, B. N. Sahu, Sindisiwe Xhakaza, André M. Strydom, Large magntocaloric effect and 3D Ising critical behaviour in Gd2Cu2In. K. Ramesh Kumar et al 122, 17003 (2018) EPL

  48. R. Venkatesh, R. Nirmala, G. Rangarajan, S.K. Malik, V. Sankaranarayanan, Study of the magnetic behavior of single-crystalline Nd0.5Sr0.5 MnO3. J. Appl. Phys. 99, 08311 (2006)

    Google Scholar 

  49. E. Zghal, M. Koubaa, W. Cheikhrouhou Koubaa, A. Cheikhrouhou, L. Sicard, S. Ammar-Merah, Influence of magnetic field on the critical behavior of La0.7Ca0.2Ba0.1MnO3. J. Alloys Compound. 627, 211–217 (2015)

    Google Scholar 

  50. R. Das, P. Alagarsamy, A. Srinivasan, Critical behavior and magnetic entropy change at magnetic phase transitions in Ni50Mn35In14Si1 ferromagnetic shape memory alloy. EPL 108, 66004 (2014)

    ADS  Google Scholar 

  51. I.G. Deac, A. Vladescu, Magnetic and magnetocaloric properties of Pr1-xSrxCoO3 cobaltites. J. Magn. Magn. Mater. 365, 1–7 (2014)

    ADS  Google Scholar 

  52. R. Venkatesh, M. Pattabiraman, K. Sethupathi, G. Rangarajan, S. Angappane et al., Tricritical point and magnetocaloric effect of Nd1−xSrxMnO3. J. Appl. Phys. 103, 07B319 (2008)

    Google Scholar 

  53. J.S. Kouvel, M.E. Fisher, Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626 (1964)

    ADS  Google Scholar 

  54. B. Widom, Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43, 3898–3905 (1965)

    ADS  Google Scholar 

  55. E. Bouzaiene, A.H. Dhahri, J. Dhahri, E.K. Hlil, K. Taibi, Long-range ferromagnetic ordering in La0.7Sr0.3Mn0.9Cu0.1O3 manganite. Appl. Phys. A 12, 126–8 (2020)

    Google Scholar 

  56. L. Zhang, J. Fan, Y. Zhang, Magnetic entropy calculation for a second-order ferromagnetic phase transition. Mod. Phys. Lett. B 28, 1450059 (2014)

    ADS  Google Scholar 

  57. R. Cabassi, F. Bolzoni, A. Gauzzi, F.J.P.R.B. Licci, Critical exponents and amplitudes of the ferromagnetic transition in La 0.1 Ba 0.9 V S 3. Phys. Rev. B. 74, 184425 (2006)

    ADS  Google Scholar 

  58. J. S. Amaral, S. Das and V. S. Amaral, The Mean-Field Theory in the Study of Ferromagnets and the Magnetocaloric Effect, Thermodynamics - Systems in Equilibrium and Non-Equilibrium, Dr. Juan Carlos Moreno Piraján (Ed.), ISBN: 978-953-307-283-8, InTech (2011)

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/110/44.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. JD: conceptualization, methodology, investigation, formal analysis, writing—original draft. RL: methodology, investigation, writing—review. SB: writing—review and editing. ME: writing—review and editing. FA: conceptualization—review and editing. AHA: review and editing. MMA: formal analysis, review and editing.

Corresponding authors

Correspondence to Jamila Dhahri or Souhir Bouzidi.

Ethics declarations

Conflict of interest

The authors (Jamila Dhahri et al.) declare that there are no conflicts of interest regarding this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhahri, J., Lefi, R., Bouzidi, S. et al. Critical behavior and magnetocaloric simulation of La0.7Ba0.2Ca0.1Mn1–xSnxO3 near room temperature. Appl. Phys. A 129, 726 (2023). https://doi.org/10.1007/s00339-023-07003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07003-3

Keywords

Navigation