Skip to main content
Log in

Voltage-controlled magnetic anisotropy in MgO/PtMnAs heterostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnesium oxide-based magnetic heterostructures with perpendicular magnetic anisotropy are receiving increasing attention for their applications in building high-density magnetic random memories. To obtain high thermal stability and flexible data writability, a large and tunable magnetic anisotropy constant (Ki) is required. In this paper, Ki is calculated for MgO/PtMnAs heterostructures with two different interfacial configurations using first-principles calculations. The MgO/AsMn_Pt heterostructure with interfacial atoms of Mn/As has a larger Ki of 4.74 mJ/m2. It is further found that a unilateral voltage-controlled magnetic anisotropy coefficient (VCMA) of 616 fJ/Vm is produced when the electric field is below − 0.2 V/nm for the MgO/AsMn_Pt heterostructure. The most significant contribution of the VCMA results from the Pt layers. The origin of these behaviors is analyzed by orbital-resolved magnetic anisotropy energy. The spin–orbit coupling of the dz2/dyz orbitals of Pt atoms is responsible for the Ki variation with voltage. This study offers a useful guide to designing magnesium oxide-based magnetic heterostructures with high and tunable magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. B. Dieny, M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys 89(2), 025008 (2017)

    ADS  MathSciNet  Google Scholar 

  2. M. Wang, W. Cai, D. Zhu, Z. Wang, J. Kan, Z. Zhao, K. Cao, Z. Wang, Y. Zhang, T. Zhang, C. Park, J.-P. Wang, A. Fert, W. Zhao, Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1(11), 582–588 (2018)

    Google Scholar 

  3. Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, Y. Suzuki, Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11(1), 39 (2011)

    ADS  Google Scholar 

  4. W.A. Borders, A.Z. Pervaiz, S. Fukami, K.Y. Camsari, H. Ohno, S. Datta, Integer factorization using stochastic magnetic tunnel junctions. Nature 573(7774), 390–393 (2019)

    ADS  Google Scholar 

  5. K.Y. Camsari, S. Chowdhury, S. Datta, Scalable emulation of sign-problem—free Hamiltonians with room-temperature p-bits. Phys. Rev. Appl. 12(3), 034061 (2019)

    ADS  Google Scholar 

  6. S. Mangin, D. Ravelosona, J.A. Katine, M.J. Carey, Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5(3), 210–215 (2006)

    ADS  Google Scholar 

  7. C. Chappert, A. Fert, F. Dau, The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813–823 (2007)

    ADS  Google Scholar 

  8. L. Vojáek, F. Ibrahim, A. Hallal, B. Dieny, M. Chshiev, Giant perpendicular magnetic anisotropy enhancement in MgO-based magnetic tunnel junction by using Co/Fe composite layer. Phys. Rev. Appl. 15(2), 024017 (2021)

    ADS  Google Scholar 

  9. Q. Sun, S. Kwon, M. Stamenova, S. Sanvito, N. Kioussis, Electric field modulation of magnetism in ferrimagnetic Heusler heterostructures. Phys. Rev. B 101(13), 134419 (2020)

    ADS  Google Scholar 

  10. Qurat-ul-ain, D. Odkhuu, S.H. Rhim, S.C. Hong, Enhanced voltage-controlled magnetic anisotropy via magneto-elasticity in FePt/MgO(001). Phys. Rev. B 101(21), 214436 (2020)

    ADS  Google Scholar 

  11. K. Masuda, Y. Miura, interface: Comparative first-principles study with Fe/MgO. Phys. Rev. B 98(22), 224421 (2018)

    ADS  Google Scholar 

  12. S. Mertens, S. Couet, R. Carpenter, J. Swerts, D. Crotti, G.S. Kar, Publisher’s Note: “MgGa2O4 as an alternative barrier for perpendicular MRAM junctions and VCMA.” Appl. Phys. Lett. 118(23), 239901 (2021)

    ADS  Google Scholar 

  13. P. Khalili Amiri, J.G. Alzate, X.Q. Cai, F. Ebrahimi, Q. Hu, K. Wong, C. Grezes, H. Lee, G. Yu, X. Li, Electric-field-controlled magnetoelectric RAM: progress, challenges, and scaling. IEEE Trans. Magn. 51(11), 1–7 (2015)

    Google Scholar 

  14. T. Nozaki, T. Yamamoto, S. Miwa, M. Tsujikawa, Y. Suzuki, Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM. Micromachines 10(5), 327 (2019)

    Google Scholar 

  15. Y. Shiota, T. Maruyama, T. Nozaki, T. Shinjo, Y. Suzuki, Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2(6), 063001 (2013)

    ADS  Google Scholar 

  16. W.G. Wang, M. Li, S. Hageman, C.L. Chien, Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2012)

    ADS  Google Scholar 

  17. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A.A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009)

    ADS  Google Scholar 

  18. T.J. Peterson, A. Hurben, W. Jiang, D. Zhang, B. Zink, Y.C. Chen, Y. Fan, T. Low, J.P. Wang, Enhancement of voltage controlled magnetic anisotropy (VCMA) through electron depletion. J. Appl. Phys. 131(15), 153904 (2022)

    ADS  Google Scholar 

  19. V.W. Guo, B. Lu, X. Wu, G. Ju, B. Valcu, D. Weller, A survey of anisotropy measurement techniques and study of thickness effect on interfacial and volume anisotropies in Co∕Pt multilayer media. J. Appl. Phys. 99(8), 08E918 (2006)

    Google Scholar 

  20. F.J. den Broeder, D. Kuiper, V.D.M. Ap, W. Hoving, Perpendicular magnetic anisotropy of Co–Au multilayers induced by interface sharpening. Phys. Rev. Lett 60(26), 2769 (1988)

    ADS  Google Scholar 

  21. L.E. Nistor, B. Rodmacq, S. Auffret, B. Dieny, Pt/Co/oxide and oxide/Co/Pt electrodes for perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 94(3), 1826 (2009)

    Google Scholar 

  22. A. Manchon, C. Ducruet, L. Lombard, S. Auffret, B. Rodmacq, B. Dieny, S. Pizzini, J. Vogel, V. Uhlir, M. Hochstrasser, Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers. J. Appl. Phys. 104(4), 043914–043917 (2008)

    ADS  Google Scholar 

  23. B. Rodmacq, S. Auffret, B. Dieny, S. Monso, P. Boyer, Crossovers from in-plane to perpendicular anisotropy in magnetic tunnel junctions as a function of the barrier degree of oxidation. J. Appl. Phys. 93(10), 7513–7515 (2003)

    ADS  Google Scholar 

  24. S. Monso, B. Rodmacq, S. Auffret, G. Casali, P. Boyer, Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: a very accurate control of the oxidation of tunnel barriers. Appl. Phys. Lett. 80(22), 4157–4159 (2002)

    ADS  Google Scholar 

  25. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9(9), 721–724 (2010)

    ADS  Google Scholar 

  26. S. Jiang, S. Nazir, K. Yang, Origin of the large interfacial perpendicular magnetic anisotropy in MgO/CO2FeAl. Phys. Rev. B 101(13), 134405 (2020)

    ADS  Google Scholar 

  27. A. Conca, A. Niesen, G. Reiss, B. Hillebrands, Evolution of the interfacial perpendicular magnetic anisotropy constant of the CO2FeAl/MgO interface upon annealing. J. Phys. D Appl. Phys. 51(16), 165303 (2018)

    ADS  Google Scholar 

  28. Z. Wen, H. Sukegawa, S. Mitani, K. Inomata, Perpendicular magnetization of CO2FeAl full-Heusler alloy films induced by MgO interface. Appl. Phys. Lett. 98(24), 2658 (2011)

    Google Scholar 

  29. K. Masuda, H. Itoh, Y. Sonobe, H. Sukegawa, S. Mitani, Y. Miura, Interfacial giant tunnel magnetoresistance and bulk-induced large perpendicular magnetic anisotropy in (111)-oriented junctions with fcc ferromagnetic alloys: A first-principles study. Am. Phys. Soc. 103(6), 064427 (2021)

    Google Scholar 

  30. K. Masuda, H. Itoh, Y. Miura, Interface-driven giant tunnel magnetoresistance in (111)-oriented junctions. Phys. Rev. B 101(14), 144404 (2020)

    ADS  Google Scholar 

  31. R. Mandal, Q. Xiang, K. Masuda, Y. Miura, Y.K. Takahashi, Spin-resolved contribution to perpendicular magnetic anisotropy and gilbert damping in interface-engineered Fe/MgAl2O4 heterostructures. Phys. Rev. Appl. 14(6), 064027 (2020)

    ADS  Google Scholar 

  32. M. Yoshio, M. Keisuke, K. Shinya, H. Kazuhiro, Giant interfacial perpendicular magnetic anisotropy in Fe/CuIn1-xGaxSe2 beyond Fe/MgO. Phys. Rev. B 96(17), 174401 (2017)

    Google Scholar 

  33. S. Jiang, Review of high-throughput computational design of Heusler alloys. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 867(1), 158854 (2021)

    MathSciNet  Google Scholar 

  34. Y. He, G.H. Fecher, C. Fu, Y. Pan, K. Manna, J. Kroder, A. Jha, X. Wang, Z. Hu, S. Agrestini, A new highly anisotropic Rh-based heusler compound for magnetic recording. Adv. Mater. 32(45), 2004331 (2020)

    Google Scholar 

  35. K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, S. Hiroaki, S. Mitani, A. Hirohata, Heusler alloys for spintronic devices: review on recent development and future perspectives. Technol. Adv. Mater. 22, 235–271 (2020)

    Google Scholar 

  36. A. Kumar, P. Fan, S. Husain, S. Akansel, R. Brucas, L. Bergqvist, S. Chaudhary, P. Svedlindh, Temperature-dependent Gilbert damping of Co2FeAl thin films with different degree of atomic order. Phys. Rev. B Condens. Matter Mater. Phys. 96(22), 224425–224429 (2017)

  37. S. Jiang, S. Nazir, K. Yang, High-throughput design of interfacial perpendicular magnetic anisotropy at Heusler/MgO heterostructures. ACS Appl. Mater. Interfaces 14(7), 9734–9743 (2022)

    Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Erratum, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18),3865–3868 (1996)

    ADS  Google Scholar 

  39. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    ADS  Google Scholar 

  40. S. Curtarolo, W. Setyawan, G. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2013)

    Google Scholar 

  41. G.G. Kresse, J.J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  42. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set—ScienceDirect. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Google Scholar 

  43. M.S. Gabor, M. Nasui, A. Timar-Gabor, Perpendicular magnetic anisotropy in Pt/Co-based full Heusler alloy/MgO thin-film structures. Phys. Rev. B 100(14), 144438 (2019)

    ADS  Google Scholar 

  44. S. Jiang, S. Nazir, K. Yang, Origin of the large interfacial perpendicular magnetic anisotropy in MgO/Co2FeAl [J]. Phys. Rev. B 101(13), 134405 (2020)

    ADS  Google Scholar 

  45. Y. Su, J. Zhang, J. Hong, L. You, The effect of insertion layer on the perpendicular magnetic anisotropy and its electric-field-induced change at Fe/MgO interface: a first-principles investigation. J. Phys. Condens. Matter 32(45), 454001 (2020)

    ADS  Google Scholar 

  46. W.Z. Chen, L.N. Jiang, Z.R. Yan, Y. Zhu, X.F. Han, Origin of the large voltage-controlled magnetic anisotropy in a Cr/Fe/MgO junction with an ultrathin Fe layer: First-principles investigation. Phys. Rev. B 101(14), 144434 (2020)

    ADS  Google Scholar 

  47. S. Peng, S. Li, W. Kang, J. Zhou, N. Lei, Y. Zhang, H. Yang, X. Li, P.K. Amiri, K.L. Wang, W. Zhao, Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure. Appl. Phys. Lett. 111(15), 152403 (2017)

    ADS  Google Scholar 

  48. J. Zhang, P.V. Lukashev, S.S. Jaswal, E.Y. Tsymbal, Model of orbital populations for voltage-controlled magnetic anisotropy in transition-metal thin films. Phys. Rev. B 96(1), 014435 (2017)

    ADS  Google Scholar 

  49. P. Ong, N. Kioussis, P.K. Amiri, J. Alzate, K. Wang, G.P. Carman, J. Hu, R. Wu, Electric field control and effect of Pd capping on magnetocrystalline anisotropy in FePd thin films: a first-principles study. Phys. Rev. B 89(9), 094422 (2014)

    ADS  Google Scholar 

  50. D. Wang, R. Wu, A.J. Freeman, First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 47(22), 14932–14947 (1993)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of the National Laboratory of Solid State Microstructures, Nanjing University (Grant no. M35049) and the School Scientific Research Project of Hangzhou Dianzi University (Grant nos. KYS045619084, KYS045619085), Fundamental Research Funds for the Provincial Universities of Zhejiang (no. GK229909299001-005), and Zhejiang Province Public Welfare Projects of China, Food Science and Engineering, the Most Important Discipline of Zhejiang Province (no. LGG22F030017).

Author information

Authors and Affiliations

Authors

Contributions

YH: investigation, formal analysis, writing—original draft. SY: methodology, investigation, conceptualization, writing—review and editing. SG: validation, formal analysis. CZ: validation, formal analysis. WQ: validation, formal analysis. RB: validation, formal analysis. TZ: supervision, writing—review and editing.

Corresponding authors

Correspondence to Shiming Yan or Tiejun Zhou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Yan, S., Gao, S. et al. Voltage-controlled magnetic anisotropy in MgO/PtMnAs heterostructures. Appl. Phys. A 129, 704 (2023). https://doi.org/10.1007/s00339-023-06996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06996-1

Keywords

Navigation