Skip to main content
Log in

Determination of normal and inverse magnetocaloric effect in iron oxide thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic cooling requires energy-efficient and eco-friendly alternatives to conventional rare earth element-based materials, which rely on materials with customized magnetic and structural properties. This study introduces the growth of iron oxide thin films for designing magnetocaloric materials, using a phenomenological model to screen candidates for the magnetocaloric effect (MCE) and inverse magnetocaloric effect (IMCE). Based on the Curie temperature (TC) window concept, ferrimagnetic Fe3O4 and the antiferromagnetic α-Fe2O3 and FeO thin films are identified as potential candidates for structural transitions (TV) and spin rearrangement (TN) achieved by manipulating their nanoscale ordering temperatures. These oxide films exhibit IMCE with a maximum entropy change (ΔSmax) ranging from 0.13 to 1.87 J/kg-K at TV and/or TN, while demonstrating the MCE effect at low temperatures. Interestingly, we demonstrate that IMCE can occur in Fe3O4 thin films without a structural transition but with a change in anisotropy. In addition, utilizing textured growth to tailor magneto-structural coupling in thin films is predicted as a novel approach for engineering magnetocaloric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated during this study are contained in this published article.

References

  1. V.K. Dwivedi, P. Mandal, S. Mukhopadhyay, ACS Appl. Electron. Mater. 4, 1611 (2022)

    Article  Google Scholar 

  2. W. Akram, M. Bansal, R.P. Pradeep, A. Kaipamangalath, S.K. Giri, T. Maity, Phys. Rev. B 107, 224403 (2023)

    Article  ADS  Google Scholar 

  3. A. Biswas, S. Chandra, T. Samanta, T.M. Phan, I. Das, H. Srikanth, J. Appl. Phys. 113, 17A902 (2013)

    Article  Google Scholar 

  4. B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Int. J. Refrig. 26, 622–636 (2003)

    Article  Google Scholar 

  5. D.V. Maheswar Repaka, M.P. Aparnadevi Kumar, T.S. Tripathi, R. Mahendiran, J. Appl. Phys. 113, 17A906 (2013)

    Article  Google Scholar 

  6. M. Patra, S. Majumdar, S. Giri, G.N. Iles, T. Chatterji, J. Appl. Phys. 107, 076101 (2010)

    Article  ADS  Google Scholar 

  7. A.V. Morozkin, V.O. Yapaskurt, J. Yao, R. Nirmala, S. Quezado, S.K. Malik, Intermetallics 107, 81–92 (2019)

    Article  Google Scholar 

  8. N. Mottaghi, R.B. Trappen, S.Y. Sarraf, M.S. Seehra, M.B. Holcomb, J. Alloys Compd. 826, 154200 (2020)

    Article  Google Scholar 

  9. S.K. Giri, P. Dasgupta, A. Poddar, T.K. Nath, J. Alloys Compd. 631, 266 (2015)

    Article  Google Scholar 

  10. H. Jani, J. Linghu, S. Hooda, R.V. Chopdekar, C. Li, G.J. Omar, S. Prakash, Y. Du, P. Yang, A. Banas, K. Banas, S. Ghosh, S. Ojha, G.R. Umapathy, D. Kanjilal, A. Ariando, S.J. Pennycook, E. Arenholz, P.G. Radaelli, J.M.D. Coey, Y.P. Feng, T. Venkatesan, Nat. Commun. 12, 1668 (2021)

    Article  ADS  Google Scholar 

  11. M. Bohra, J. Electron. Mater. 51, 2709–2715 (2022)

    Article  ADS  Google Scholar 

  12. S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, ACS Nano 11, 6808 (2017)

    Article  Google Scholar 

  13. R. Sinmyo, E. Bykova, S.V. Ovsyannikov, C. McCammon, I. Kupenko, L. Ismailova, L. Dubrovinsky, Sci. Rep. 6, 32852 (2016)

    Article  ADS  Google Scholar 

  14. A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, S.I. Ohkoshi, Nat. Commun. 3, 1035 (2012)

    Article  ADS  Google Scholar 

  15. S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, J. Am. Chem. Soc. 131, 18299 (2009)

    Article  Google Scholar 

  16. V. Ukleev, S. Suturin, T. Nakajima, T.H. Arima, T. Saerbeck, T. Hanashima, A. Sitnikova, D. Kirilenko, N. Yakovlev, N. Sokolov, Sci. Rep. 8, 8741 (2018)

    Article  ADS  Google Scholar 

  17. M. Bohra, N. Agarwal, V. Singh, J. Nanomater. 2, 1–8 (2019)

    Article  Google Scholar 

  18. H.M. Lu, X.K. Meng, J. Phys. Chem. C 114(49), 21291 (2010)

    Article  Google Scholar 

  19. V.V. Korolev, I.M. Arefyev, A.G. Ramazanova, J. Thermal Anal. Alorimetry 92(3), 691 (2008)

    Article  Google Scholar 

  20. P. Poddar, J. Gass, D.J. Rebar, S. Srinath, H. Srikanth, S.A. Morrison, E.E. Carpenter, J. Magn. Magn. Mater. 307, 227 (2006)

    Article  ADS  Google Scholar 

  21. N. Chau, N. Thuan, D. Minh, N. Luong, J. Sci. Math. Phys. 24, 155 (2008)

    Google Scholar 

  22. M. Bohra, D. Roy Chowdhury, J.F. Bobo, V. Singh, J. Appl. Phys. 125, 013901 (2019)

    Article  ADS  Google Scholar 

  23. M.A. Almessiere, Y. Slimani, A. Demir Korkmaz, A. Baykal, H. Güngüneş, H. Sözeri, S.E. Shirsath, S. Güner, S. Akhtar, A. Manikandani, RSC Adv. 9, 30671 (2019)

    Article  ADS  Google Scholar 

  24. Y. Slimani, B. Unal, M.A. Almessiere, A. Demir Korkmaz, E. Sagar, G. Shirsath, A.V. Yasin, A.B. Trukhanov, Results Phys. 17, 103061 (2020)

    Article  Google Scholar 

  25. M. Abdullah Almessiere, Y. Slimani, H. Güngüneş, S. Ali, A. Manikandan, I. Ercan, A. Baykal, A.V. Trukhanov, Nanomaterials 9, 820 (2019)

    Article  Google Scholar 

  26. P. Annie Vinosha, A. Manikandan, A. Sherley Judith Ceicilia, A. Dinesh, G. Francisco Nirmala, A. Christy Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, X. Belina, Ceram. Int. 47, 10512 (2021)

    Article  Google Scholar 

  27. M.A. Almessiere, Y. Slimani, S. Güner, A. Baykal, I. Ercan, J. Rare Earths 37, 871 (2019)

    Article  Google Scholar 

  28. M. Bohra, K.E. Prasad, R. Bollina, S.C. Sahoo, N. Kumar, J. Magn. Magn. Mater. 418, 137 (2016)

    Article  ADS  Google Scholar 

  29. M. Bohra, N. Singh, A. Annadi, S. Vittal, V. Singh, Mater. Res. Bull. 2, 2 (2023)

    Google Scholar 

  30. M. Bohra, S.C. Sahoo, J. Alloys Compd. 699, 1118–1121 (2017)

    Article  Google Scholar 

  31. M. Pekala, J. Appl. Phys. 108, 113913 (2010)

    Article  ADS  Google Scholar 

  32. M. Bohra, S. Prasad, N. Venketaramani, N. Kumar, S.C. Sahoo, J. Magn. Magn. Mater. 321, 3738–3741 (2009)

    Article  ADS  Google Scholar 

  33. Z. Kąkol, G. Król, W. Tabiś, T. Kołodziej, A. Wiśniewski, H. Stepankova, V. Chlan, J. Kusz, Z. Tarnawski, A. Kozłowski, J.M. Honig, J. Phys. Conf. Ser. 303, 012106 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shiva Prasad and Dr. N. Venkataramani from IIT Bombay (India) for allowing use of their experimental facilities. We also thank to Dr. S.C. Sahoo from IIT Bombay (India) for assisting with the magnetic measurements.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MB, DS, PG, AA, VS and JFB contributed to executing data analysis, writing the manuscript, drawing figures, and manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Murtaza Bohra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial Interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 285 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohra, M., Gupta, P., Sahadot, D. et al. Determination of normal and inverse magnetocaloric effect in iron oxide thin films. Appl. Phys. A 129, 721 (2023). https://doi.org/10.1007/s00339-023-06993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06993-4

Keywords

Navigation