Skip to main content

Advertisement

Log in

Bioavailability and biocompatibility of FeOOH nanostructures as iron supplements: the matter of particle’s shape

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the current study, bioavailability and biocompatibility of iron oxide–hydroxide (FeOOH) nanospheres (FeNSs) and nanorods (FeNRs) were compared in an in vivo study to investigate the impact of particles shape on efficacy of nano-based iron supplements. FeNSs and FeNRs were fabricated via bio-assisted synthesis reactions using secretory compounds from an edible microalga, Chlorella vulgaris. Resulted FeNSs were ~ 12.7 nm in mean diameter. Mean width of FeNRs were calculated to be 10.8 nm and their mean length was 56.1 nm. Rats were supplemented daily with FeOOH nanostructures and ferrous sulfate. After 1 month, hematologic parameters, serum and organs iron contents, liver function, and organ indexes were evaluated. FeNSs and FeNRs provided significantly increased levels for RBC, liver iron, and spleen iron in contrast to ferrous sulfate. However, just FeNRs were more efficient than ferrous sulfate to elevate the level of Hb (21.9% more than FeSO4) and HTC (22.9% more than FeSO4). It is considered that all examined iron supplements provide an equal level of serum iron. FeOOH nanostructures had no significant effect on toxicological parameters. The only point of concern was increased LDH levels in relation to FeNRs, about 6.4-fold increase was recorded in contrast to untreated group. However, no significant histopathological alterations were detected in FeNRs-treated animals. It can be concluded that nano-based iron supplements are significantly more efficient than iron salts, and the shape of nanostructures can affect their bioavailability. These data can pave the way for future studies toward more efficient and less toxic nano-based iron supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. WHO/UNICEF/UNU. Iron deficiency anaemia: assessment, prevention and control, a guide for programme managers: World Health Organization Geneva Switzerland; 2001 [cited 2022]. Available from: https://www.who.int/publications/m/item/iron-children-6to23--archived-iron-deficiency-anaemia-assessment-prevention-and-control

  2. B. De Benoist, M. Cogswell, I. Egli, E. McLean, Worldwide prevalence of anaemia 1993–2005; WHO Global Database of anaemia: WHO; 2008. Available from: https://apps.who.int/iris/handle/10665/43894

  3. J.W. Adamson, Regulation of red blood cell production. Am. J. Med. 101(2), 4S-6S (1996)

    Google Scholar 

  4. S. Donnelly, Why is erythropoietin made in the kidney? The kidney functions as a critmeter. Am. J. Kidney Dis. 38(2), 415–425 (2001)

    Google Scholar 

  5. S.E. Graber, S. Krantz, Erythropoietin and the control of red cell production. Annu. Rev. Med. 29(1), 51–66 (1978)

    Google Scholar 

  6. D. Kapur, K. Nath Agarwal, D. Kumari Agarwal, Nutritional anemia and its control. Indian J. Pediatr. 69(7), 607–616 (2002)

    Google Scholar 

  7. N. Berlin, T. Waldmann, S. Weissman, Life span of red blood cell. Physiol. Rev. 39(3), 577–616 (1959)

    Google Scholar 

  8. N. Abbaspour, R. Hurrell, R. Kelishadi, Review on iron and its importance for human health. J. Res. Med. Sci. 19(2), 164–174 (2014)

    Google Scholar 

  9. R. Larocque, M. Casapia, E. Gotuzzo, T.W. Gyorkos, Relationship between intensity of soil-transmitted helminth infections and anemia during pregnancy. Am. J. Trop. Med. Hyg. 73(4), 783–789 (2005)

    Google Scholar 

  10. C. WHO, Assessing the iron status of populations: including literature reviews: report of a Joint World Health Organization 2004 [cited 2004]. Available from: https://www.who.int/publications/i/item/9789241596107

  11. L.R. McDowell, Minerals in Animal and Human Nutrition (Elsevier Science BV, USA, 2003)

    Google Scholar 

  12. M.E. Shils, M. Shike, Modern Nutrition in Health and Disease (Lippincott Williams & Wilkins, Philadelphia, PA, 2006)

    Google Scholar 

  13. T. McDonagh, I.C. Macdougall, Iron therapy for the treatment of iron deficiency in chronic heart failure: intravenous or oral? Eur. J. Heart Fail. 17(3), 248–262 (2015)

    Google Scholar 

  14. A. Ghanbariasad, S.-M. Taghizadeh, P.L. Show, S. Nomanbhay, A. Berenjian, Y. Ghasemi et al., Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae. Bioengineered 10(1), 390–396 (2019)

    Google Scholar 

  15. K. Żebrowska, E. Coy, K. Synoradzki, S. Jurga, P. Torruella, R. Mrówczyński, Facile and controllable growth of β-FeOOH nanostructures on polydopamine spheres. J. Phys. Chem. B. 124(42), 9456–9463 (2020)

    Google Scholar 

  16. S.-M. Taghizadeh, A. Berenjian, M. Zare, A. Ebrahiminezhad, New perspectives on iron-based nanostructures. Processes 8(9), 1128 (2020)

    Google Scholar 

  17. H.M. Naguib, M.A. Ahmed, Z.L. Abo-Shanab, Studying the loading impact of silane grafted Fe2O3 nanoparticles on mechanical characteristics of epoxy matrix. Egypt. J. Pet. 28(1), 27–34 (2019)

    Google Scholar 

  18. P. Kumar, V. Tomar, D. Kumar, R.K. Joshi, M. Nemiwal, Magnetically active iron oxide nanoparticles for catalysis of organic transformations: a review. Tetrahedron 106, 132641 (2022)

    Google Scholar 

  19. S.-I. Ohkoshi, K. Imoto, A. Namai, M. Yoshikiyo, S. Miyashita, H. Qiu et al., Rapid faraday rotation on ε-iron oxide magnetic nanoparticles by visible and terahertz pulsed light. J. Am. Chem. Soc. 141(4), 1775–1780 (2019)

    Google Scholar 

  20. C.H. Le Huy, A.T. Thanh, Study on fabricating epoxy coatings reinforced with iron oxide flakes and nano silica. J. Reinf. Plast. Compos. 42(13–14), 724–740 (2023)

    Google Scholar 

  21. J. Khanam, M.R. Hasan, B. Biswas, S.A. Jahan, N. Sharmin, S. Ahmed et al., Development of ceramic grade red iron oxide pigment from waste iron source. Heliyon 9(1), e12854 (2023)

    Google Scholar 

  22. C. Chen, J. Ge, Y. Gao, L. Chen, J. Cui, J. Zeng et al., Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14(1), e1740 (2022)

    Google Scholar 

  23. E. Christou, J.R. Pearson, A.M. Beltrán, Y. Fernández-Afonso, L. Gutiérrez, J.M. de la Fuente et al., Iron–gold nanoflowers: a promising tool for multimodal imaging and hyperthermia therapy. Pharmaceutics. 14(3), 636 (2022)

    Google Scholar 

  24. D. Stanicki, T. Vangijzegem, I. Ternad, S. Laurent, An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin. Drug Deliv. 19(3), 321–335 (2022)

    Google Scholar 

  25. S. Taghavi, A. Amiri, A. Amin, A. Ehsani, M. Maleki, N. Naderi, Oral iron therapy with polysaccharide-iron complex may be useful in increasing the ferritin level for a short time in patients with dilated cardiomyopathy. Res. Cardiovasc. Med. 6(1), e39816 (2017)

    Google Scholar 

  26. A. Kumari, A.K. Chauhan, Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: a review. J. Food Sci. Technol. 59(9), 3319–3335 (2022)

    Google Scholar 

  27. R. Heidari, S.-M. Taghizadeh, M. Karami-Darehnaranji, E. Mirzaei, A. Berenjian, A. Ebrahiminezhad, Application of FeOOH nano-ellipsoids as a novel nano-based iron supplement: an in vivo study. Biol. Trace Elem. Res. 200(5), 2174–2182 (2022)

    Google Scholar 

  28. M. Karami-Darehnaranji, S.-M. Taghizadeh, E. Mirzaei, R. Heidari, A. Berenjian, A. Ebrahiminezhad, Bio-assisted synthesis of food-grade FeOOH nanoellipsoids as promising iron supplements for food fortification. Appl. Food Biotechnol. 8(1), 71–77 (2020)

    Google Scholar 

  29. A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012)

    Google Scholar 

  30. C. Ma, J. Zhang, T. Zhang, H. Sun, J. Wu, J. Shi et al., Comparing the rod-like and spherical BODIPY nanoparticles in cellular imaging. Front. Chem. 7, 765 (2019)

    ADS  Google Scholar 

  31. W. Zhang, M. Yu, Z. Xi, D. Nie, Z. Dai, J. Wang et al., Cancer cell membrane-camouflaged nanorods with endoplasmic reticulum targeting for improved antitumor therapy. ACS Appl. Mater. Interfaces 11(50), 46614–46625 (2019)

    Google Scholar 

  32. V. Zavisova, M. Koneracka, A. Gabelova, B. Svitkova, M. Ursinyova, M. Kubovcikova et al., Effect of magnetic nanoparticles coating on cell proliferation and uptake. J. Magn. Magn. Mater. 472, 66–73 (2019)

    ADS  Google Scholar 

  33. N.P.D. Sert, V. Hurst, A. Ahluwalia, S. Alam, M.T. Avey, M. Baker et al., The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18(7), e3000410 (2020)

    Google Scholar 

  34. M.M. Ommati, R. Heidari, R.K. Manthari, S. Tikka-Chiranjeevi, R. Niu, Z. Sun et al., Paternal exposure to arsenic resulted in oxidative stress, autophagy, and mitochondrial impairments in the HPG axis of pubertal male offspring. Chemosphere 236, 124325 (2019)

    ADS  Google Scholar 

  35. A. Siavashpour, B. Khalvati, N. Azarpira, H. Mohammadi, H. Niknahad, R. Heidari, Poly (ADP-Ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats. Toxicol. Lett. 330, 144–158 (2020)

    Google Scholar 

  36. C. Luna, M. Ilyn, V. Vega, V.M. Prida, J.N. González, R. Mendoza-Reséndez, Size distribution and frustrated antiferromagnetic coupling effects on the magnetic behavior of ultrafine akaganéite (β-FeOOH) nanoparticles. J. Phys. Chem. C. 118(36), 21128–21139 (2014)

    Google Scholar 

  37. G. Kasparis, A.S. Erdocio, J.M. Tuffnell, N.T.K. Thanh, Synthesis of size-tuneable β-FeOOH nanoellipsoids and a study of their morphological and compositional changes by reduction. CrystEngComm 21(8), 1293–1301 (2019)

    Google Scholar 

  38. Y. Ma, L. Zhang, W. Shi, Y. Niu, B. Zhang, D.J.C.C.L. Su, Facile-fabricated iron oxide nanorods as a catalyst for hydrogenation of nitrobenzene. Chin. Chem. Lett. 30(1), 183–186 (2019)

    Google Scholar 

  39. Y. Piao, J. Kim, H.B. Na, D. Kim, J.S. Baek, M.K. Ko et al., Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater. 7(3), 242–247 (2008)

    ADS  Google Scholar 

  40. M. Karami-Darehnaranji, S.-M. Taghizadeh, E. Mirzaei, A. Berenjian, A. Ebrahiminezhad, Size tuned synthesis of FeOOH nanorods toward self-assembled nanoarchitectonics. Langmuir 37(1), 115–123 (2020)

    Google Scholar 

  41. A. Ebrahiminezhad, Y. Ghasemi, S. Rasoul-Amini, J. Barar, S. Davaran, Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull. Korean Chem. Soc. 33(12), 3957–3962 (2012)

    Google Scholar 

  42. A. Ebrahiminezhad, M. Bagheri, S. Taghizadeh, A. Berenjian, Y. Ghasemi, Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv. Nat. Sci. 7, 015018 (2016)

    Google Scholar 

  43. E.P.F. Nhavene, G.F. Andrade, J.A.Q.A. Faria, D.A. Gomes, E.M.B.D. Sousa, Biodegradable polymers grafted onto multifunctional mesoporous silica nanoparticles for gene delivery. ChemEngineering 2(2), 2020024 (2018)

    Google Scholar 

  44. J. Xie, J.Y. Lee, D.I. Wang, Y.P. Ting, Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1(5), 429–439 (2007)

    Google Scholar 

  45. S.-M. Taghizadeh, N. Lal, A. Ebrahiminezhad, F. Moeini, M. Seifan, Y. Ghasemi et al., Green and economic fabrication of zinc oxide (ZnO) nanorods as a broadband UV blocker and antimicrobial agent. Nanomaterials 10(3), 530 (2020)

    Google Scholar 

  46. J. Yue, X. Jiang, A. Yu, Experimental and theoretical study on the β-FeOOH nanorods: growth and conversion. J. Nanopart. Res. 13(9), 3961–3974 (2011)

    ADS  Google Scholar 

  47. N.K. Chaudhari, J.-S. Yu, Size control synthesis of uniform β-FeOOH to high coercive field porous magnetic α-Fe2O3 nanorods. J. Phys. Chem. C. 112(50), 19957–19962 (2008)

    Google Scholar 

  48. B. Tang, G. Wang, L. Zhuo, J. Ge, L. Cui, Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 45(13), 5196–5200 (2006)

    Google Scholar 

  49. K. Chen, X. Chen, D. Xue, Hydrothermal route to crystallization of FeOOH nanorods via FeCl3· 6H2O: effect of Fe3+ concentration on pseudocapacitance of iron-based materials. CrystEngComm 17(9), 1906–1910 (2015)

    Google Scholar 

  50. D. Bakoyannakis, E. Deliyanni, A. Zouboulis, K. Matis, L. Nalbandian, T. Kehagias, Akaganeite and goethite-type nanocrystals: synthesis and characterization. Microporous Mesoporous Mater. 59(1), 35–42 (2003)

    Google Scholar 

  51. M. Xiao, Y. Zhao, S. Li, Facile synthesis of chrysanthemum-like mesoporous α-FeOOH and its adsorptive behavior of antimony from aqueous solution. J. Dispersion Sci. Technol. 41(12), 1812–1820 (2020)

    Google Scholar 

  52. Z. Xu, M. Xie, Y. Ben, J. Shen, F. Qi, Z. Chen, Efficiency and mechanism of atenolol decomposition in Co–FeOOH catalytic ozonation. J. Hazard. Mater. 365, 146–154 (2019)

    Google Scholar 

  53. S.E. Lazic, E. Semenova, D.P. Williams, Determining organ weight toxicity with Bayesian causal models: improving on the analysis of relative organ weights. Sci. Rep. 10(1), 6625 (2020)

    ADS  Google Scholar 

  54. S. Zlotkin, P. Arthur, K.Y. Antwi, G. Yeung, Randomized, controlled trial of single versus 3-times-daily ferrous sulfate drops for treatment of anemia. Pediatrics 108(3), 613–616 (2001)

    Google Scholar 

  55. J.D. Cook, M.B. Reddy, Efficacy of weekly compared with daily iron supplementation. Am. J. Clin. Nutr. 62(1), 117–120 (1995)

    Google Scholar 

  56. A.G. Soemantri, Preliminary findings on iron supplementation and learning achievement of rural Indonesian children. Am. J. Clin. Nutr. 50(3), 698–702 (1989)

    Google Scholar 

  57. B. Froessler, C. Cocchiaro, K. Saadat-Gilani, N. Hodyl, G. Dekker, Intravenous iron sucrose versus oral iron ferrous sulfate for antenatal and postpartum iron deficiency anemia: a randomized trial. J. Matern. -Fetal Neonatal Med. 26(7), 654–659 (2013)

    Google Scholar 

  58. Z. Tolkien, L. Stecher, A.P. Mander, D.I. Pereira, J.J. Powell, Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS ONE 10(2), e0117383 (2015)

    Google Scholar 

  59. G. Benoni, L. Cuzzolin, D. Zambreri, M. Donini, P. Del Soldato, I. Caramazza, Gastrointestinal effects of single and repeated doses of ferrous sulphate in rats. Pharmacol. Res. 27(1), 73–80 (1993)

    Google Scholar 

  60. I.M. Zijp, O. Korver, L.B. Tijburg, Effect of tea and other dietary factors on iron absorption. Crit. Rev. Food Sci. Nutr. 40(5), 371–398 (2000)

    Google Scholar 

  61. S. Kianpour, A. Ebrahiminezhad, R. Heidari, B. Khalvati, M.-A. Shahbazi, M. Negahdaripour et al., Enterobacter sp. mediated synthesis of biocompatible nanostructured iron-polysaccharide complexes: a nutritional supplement for iron-deficiency anemia. Biol. Trace Elem. Res. 198, 744–755 (2020)

    Google Scholar 

  62. P.K. Saha, L. Saha, Iron nanoparticles and its potential application: a literature review. Indian J. Pharmacol. 53(4), 339–340 (2021)

    Google Scholar 

  63. K.Y. Kim, J.H. Lee, A. Hosseindoust, M.J. Kim, J.Y. Mun, J. Moturi et al., Enhancement of ferrous sulfate absorption using nano-technology in broiler chickens. Livest. Sci. 260, 104869 (2022)

    Google Scholar 

  64. F. Hashem, M. Nasr, Y. Ahmed, Preparation and evaluation of iron oxide nanoparticles for treatment of iron deficiency anemia. Int. J. Pharm. Pharm. Sci. 10(1), 142–146 (2018)

    Google Scholar 

  65. M.A. Elshemy, Iron oxide nanoparticles versus ferrous sulfate in treatment of iron deficiency anemia in rats. Egypt. J. Vet. Sci. 49(2), 103–109 (2018)

    Google Scholar 

  66. R. Augustine, A. Hasan, R. Primavera, R.J. Wilson, A.S. Thakor, B.D. Kevadiya, Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 25, 101692 (2020)

    Google Scholar 

  67. I.M. Adjei, B. Sharma, V. Labhasetwar, Nanoparticles: cellular uptake and cytotoxicity. Adv. Exp. Med. Biol. 811, 73–91 (2014)

    Google Scholar 

  68. P. Foroozandeh, A. Abdul Aziz, Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 13(1), 339 (2018)

    ADS  Google Scholar 

  69. S.E. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier et al., The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008)

    ADS  Google Scholar 

  70. P. Kolhar, A.C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti et al., Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. 110(26), 10753–10758 (2013)

    ADS  Google Scholar 

  71. D.M. Teleanu, C. Chircov, A.M. Grumezescu, A. Volceanov, R.I. Teleanu, Impact of nanoparticles on brain health: an up to date overview. J. Clin. Med. 7(12), 490 (2018)

    Google Scholar 

  72. M. Afkhami-Ardakani, A. Shirband, J. Golzade, M. Asadi-Samani, E. Latifi, M. Kheylapour et al., The effect of iron oxide nanoparticles on liver enzymes (ALT, AST and ALP), thyroid hormones (T3 and T4) and TSH in rats. J. Shahrekord Univ. Med. Sci. 14(6), 82–88 (2013)

    Google Scholar 

  73. P. Manna, M. Ghosh, J. Ghosh, J. Das, P.C. Sil, Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB MAPKs and mitochondrial signal. Nanotoxicology 6(1), 1–21 (2012)

    Google Scholar 

  74. S.M. Smith, M.B. Wunder, D.A. Norris, Y.G. Shellman, A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PLoS ONE 6(11), e26908 (2011)

    ADS  Google Scholar 

  75. P. Kumar, A. Nagarajan, P.D. Uchil, Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc. 2018(6), pdb.prot095497 (2018)

    Google Scholar 

Download references

Funding

This study was financially supported by the Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

RH: animal studies and statistical analysis. S-MT: writing the manuscript and graphical artworks. MK-D: preliminary studies and data collection. EM: consultation on study design. AB: writing and editing the manuscript. AE: supervision and grant’s owner.

Corresponding author

Correspondence to Alireza Ebrahiminezhad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Iran National Committee approved the study for Ethics in Biomedical Research (Approval ID IR.SUMS.REC.1399.964).

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, R., Taghizadeh, SM., Karami-Darehnaranji, M. et al. Bioavailability and biocompatibility of FeOOH nanostructures as iron supplements: the matter of particle’s shape. Appl. Phys. A 129, 697 (2023). https://doi.org/10.1007/s00339-023-06988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06988-1

Keywords

Navigation