Skip to main content
Log in

MoO2-based cost effective catalyst for hydrogen evolution via water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Developing a cost-effective, highly efficient electrocatalyst for the hydrogen evolution reaction (HER) is a major challenge. Herein, we developed metallic molybdenum dioxide (MoO2) films on a stainless steel (SS) substrate by a simple one-step hydrothermal process employing citric acid as a chelating agent. The experiment was carried out with different concentrations of the precursor solution. The porous and compactly arranged interconnected micro-sheets are shown by a MoO2 that enhances the HER in the acidic electrolyte. Its electrochemical study showed excellent water-splitting activity with more than 9 h of stability. The low onset potential of 60 mV and overpotential of 162 mV vs RHE at a current density of 10 mA/cm2 makes this electrode an efficient electro-catalyst for HER. Also, the use of low-cost substrates like SS and normal air annealing, makes the MoO2 sample, cost-effective and better for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References:

  1. M.A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, J. Zhang, Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews 1, 483–530 (2018). https://doi.org/10.1007/s41918-018-0014-z

    Article  Google Scholar 

  2. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009). https://doi.org/10.1016/j.cattod.2008.08.039

    Article  Google Scholar 

  3. B.C.R. Ewan, R.W.K. Allen, A figure of merit assessment of the routes to hydrogen. Int. J. Hydrogen Energy 30–9, 809–819 (2005). https://doi.org/10.1016/j.ijhydene.2005.02.003

    Article  Google Scholar 

  4. Y. Wang, J. Zhang, Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Front. Chem. Sci. Eng. 12, 838–854 (2018). https://doi.org/10.1007/s11705-018-1746-3

    Article  Google Scholar 

  5. R. de Levie, Short Communication The electrolysis of water; Journal of Electroanalytical Chemistry 476 (1999) 92–93. www.fbsfvmfr.gb/bjhntf/afbfhefd

  6. H. Cavendish, Experiments on air. Philos. Trans. 74, 119 (1784). https://doi.org/10.1098/rstl.1784.0014

    Article  Google Scholar 

  7. A. Paets Van Troostwijk, J.R. Deiman, electron-proton transfer theory and electrocatalysis. Obs. Phys 35, 369 (1798)

    Google Scholar 

  8. C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43, 6555–6569 (2014). https://doi.org/10.1039/C3CS60468C

    Article  Google Scholar 

  9. S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Convergence (2021). https://doi.org/10.1186/s40580-021-00254-x

    Article  Google Scholar 

  10. V.A. Shahraei, Investigation of the water splitting reactions on multi-heteroatom doped cobalt-based carbon catalysts, 2018, chapter 1 (Dissertation)

  11. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. Ming, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/c6cs00328a

    Article  Google Scholar 

  12. Z. Lei, J.M. Lee, G. Singh, C.I. Sathish, X. Chu, A.H. Al-Muhtaseb, A. Vinu, J. Yi, Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 36, 514–550 (2021). https://doi.org/10.1186/s40580-021-00254-x

    Article  Google Scholar 

  13. Q. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai, W. Yi, J. Liu, J. Han, G. Xi, A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 8, 14903 (2017). https://doi.org/10.1038/ncomms14903

    Article  ADS  Google Scholar 

  14. V. Ramakrishnan, C. Alex, A.N. Nair, N.S. John, Designing metallic MoO2 nanostructures on rigid substrates for electrochemical water activation. Chem. A Eur. J. 24, 18003–18011 (2018). https://doi.org/10.1002/chem.201803570

    Article  Google Scholar 

  15. Y. Jin, P.K. Shen, Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 20080–20085 (2015). https://doi.org/10.1039/c5ta06018d

    Article  Google Scholar 

  16. S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. J. Mater. Chem. 16, 3575 (2006). https://doi.org/10.1039/b607335b

    Article  Google Scholar 

  17. Y. Liu, B. Huang, Z. Xie, Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 427, 693–701 (2018). https://doi.org/10.1016/j.apsusc.2017.08.098

    Article  ADS  Google Scholar 

  18. B. Wang, Z. Zhang, S. Zhang, Y. Cao, Y. Sua, S. Liue, W. Tang, J. Yub, Y. Oub, S. Xiea, J. Lig, M. Ma, Surface excited MoO2 to master full water splitting. Electrochim Acta. 359, 136929 (2020). https://doi.org/10.1016/j.electacta.2020.136929

    Article  Google Scholar 

  19. Y. Fan, X. Zhang, Y. Zhang, X. Xie, J. Ding, J. Cai, B. Li, H. Lv, L. Liu, M. Zhu, X. Zheng, Q. Cai, Y. Liu, Lu. Siyu, Decoration of Ru/RuO2 hybrid nanoparticles on MoO2 plane as bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 604, 508–516 (2021). https://doi.org/10.1016/j.jcis.2021.07.038

    Article  ADS  Google Scholar 

  20. L. Yang, Yu. Jiayuan, Z. Wei, G. Li, L. Cao, W. Zhou, S. Chen, Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 41, 772–779 (2017). https://doi.org/10.1016/j.nanoen.2017.03.032

    Article  Google Scholar 

  21. S. Deng, X. Liu, T. Huang, T. Zhao, Y. Lu, J. Cheng, T. Shen, J. Liang, D. Wang, MoO2 modulated electrocatalytic properties of Ni: investigate from hydrogen oxidation reaction to hydrogen evolution reaction. Electrochim. Acta 324, 134892 (2019). https://doi.org/10.1016/j.electacta.2019.134892

    Article  Google Scholar 

  22. T. Zhou, Y.Q. Huang, A. Ali, P.K. Shen, Ni-MoO2 nanoparticles heterojunction loaded on stereotaxically-constructed graphene for high-efficiency overall water splitting. J. Electroanalyt. Chem. 897, 115555 (2021). https://doi.org/10.1016/j.jelechem.2021.115555

    Article  Google Scholar 

  23. L. Karuppasamy, L. Gurusamy, S. Anandan, C.H. Liu, J.J. Wu, Defect-enriched heterointerfaces N-MoO2–Mo2C supported Pd nanocomposite as a novel multifunctional electrocatalyst for oxygen, reduction reaction and overall water splitting. Mater. Today Chem. 24, 100799 (2022). https://doi.org/10.1016/j.mtchem.2022.100799

    Article  Google Scholar 

  24. Y.C. Shinta, B. Zaman, S. Sumiyati, Citric Acid and EDTA as chelating agents in phytoremediation of heavy metal in polluted soil: A review. IOP Conf. Ser. Earth Environ. Sci. (2021). https://doi.org/10.1088/1755-1315/896/1/012023

    Article  Google Scholar 

  25. M.A. Pin, Sabir Hussain, Yuan Lin and Zihai Cheng, FeS 2 /carbon hybrids on carbon cloth: a highly efficient and stable counter electrode for dye-sensitized solar cell. Sustain. Energy Fuels 3, 1749–1756 (2019)

    Article  Google Scholar 

  26. Lu. Wang, G.-H. Zhang, K.-C. Chou, Study on oxidation mechanism and kinetics of MoO2 to MoO3 in air atmosphere. Int. J. Refract. Metals Hard Mater. 57, 115–124 (2016). https://doi.org/10.1016/j.ijrmhm.2016.03.001

    Article  Google Scholar 

  27. A. Bhaskar, M. Deepa, M. Deepa, MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. Appl. Mater. Interfaces 5, 2555–2566 (2013). https://doi.org/10.1021/am3031536

    Article  Google Scholar 

  28. X. Dengab, B. Zhaoabe, Y. Zhongab, Y. Zhuab, Z. Shaoacd, Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. J. Mater. Chem. A 4, 10403–10408 (2016)

    Article  Google Scholar 

  29. H.-S. Kim, J.B. Cook, S.H. Tolbert, B. Dunna, The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015). https://doi.org/10.1149/2.0141505jes

    Article  Google Scholar 

  30. L. Wang, J. Suna, Molybdenum modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Renew. Sustain. Energy 5, 021407 (2013). https://doi.org/10.1063/1.4798437

    Article  Google Scholar 

  31. T. Ungar, Microstructural parameters from X-ray diffraction peak broadening. Scripta Mater. 51, 777781 (2004). https://doi.org/10.1016/j.scriptamat.2004.05.007

    Article  Google Scholar 

  32. D. Tahir, E.K. Lee, T.T. Tham, S.K. Oh, H.J. Kang, J. Hua, S. Heo, J.C. Park, J.G. Chung, J.C. Lee, Band alignment of atomic layer deposited (ZrO2)x(SiO2)1–x gate dielectrics on Si (100). Appl. Phys. Lett. 94, 212902 (2009)

    Article  ADS  Google Scholar 

  33. A.S. Pratiyush, S. Krishnamoorthy, R. Muralidharan, S. Rajan, D.N. Nath, Advances in Ga2O3 solar-blind UV photodetectors. In: Gallium Oxide Technology, Devices and Applications Metal Oxides, Chapter-16, 369–399, (2019). https://doi.org/10.1016/B978-0-12-814521-0.00016-6

  34. X. Liu, Y. He, S. Wang, Q. Zhang, Preparation of MoO2 sub-micro scale sheets and their optical properties. J. Alloy. Compd. 509, S408–S411 (2011). https://doi.org/10.1016/j.jallcom.2011.01.089

    Article  Google Scholar 

  35. J. Tauc, F. Abeles (eds.), The Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  36. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T.P. Leervad Pedersen, R. Drese, M. Wuttig, Correlation between structure, stress and optical properties in direct current sputtered molybdenum oxide films. Thin Solid Films 429, 135–143 (2003). https://doi.org/10.1016/s0040-6090(03)00068-3

    Article  ADS  Google Scholar 

  37. S. Ghosh, H.R. Inta, S. Ganguli, G. Tudu, H.V.S.R.M. Koppisetti, V. Mahalingam, MoO2 as a propitious “Pore-Forming Additive” for boosting the water oxidation activity of cobalt oxalate microrods. J. Phys. Chem. 124, 20010–20020 (2020). https://doi.org/10.1021/acs.jpcc

    Article  Google Scholar 

  38. G. Song, J. Shen, F. Jiang, Hu. Ronggui, W. Li, L. An, R. Zou, Z. Chen, Z. Qin, Hu. Junqing, Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photo thermal ablation of cancer cells. ACS Appl. Mater. Interfaces 6, 3915–3922 (2014). https://doi.org/10.1021/am4050184

    Article  Google Scholar 

  39. W. Han, P. Yuan, Y. Fan, H. Liu, X. Bao, Synthesis, self-assembly and disassembly of mono-dispersed mo-based inorganic organic hybrid nanocrystals. J. Mater. Chem. 22, 12121–12127 (2012)

    Article  Google Scholar 

  40. L. Fang, Y. Shu, A. Wang, T. Zhang, Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures. J. Phys. Chem. C 111, 2401–2408 (2007). https://doi.org/10.1021/jp065791r

    Article  Google Scholar 

  41. N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Appl. Surf. Sci. 416, 461–469 (2017). https://doi.org/10.1016/j.apsusc.2017.04.094

    Article  ADS  Google Scholar 

  42. T. Nagyne-Kovacs, L. Studnicka, I.E. Lukacs, K. Laszlo, P. Pasierb, I.M. Szilogyi, G. Pokol, Hydrothermal synthesis and gas sensing of monoclinic MoO3 nanosheets. Nanomaterials 10, 891 (2020). https://doi.org/10.3390/nano10050891

    Article  Google Scholar 

  43. L.C. Bichara, H.E. Lanús, E.G. Ferrer, M.B. Gramajo, S.A. Brandán, Vibrational study and force field of the citric acid dimer based on the SQM methodology. Adv. Phys. Chem. (2011). https://doi.org/10.1155/2011/347072

    Article  Google Scholar 

  44. Z.C. Xiang, Q. Zhang, Z. Zhang, X. Jin, X.J. Xua, Preparation and photoelectric properties of semiconductor MoO2 micro/nanospheres with wide bandgap. Ceram. Int. 41, 977–981 (2015). https://doi.org/10.1016/j.ceramint.2014.09.017

    Article  Google Scholar 

  45. N. Dukstiene, D. Sinkeviciute, A. Guobiene, Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Open Chem. 10, 1106–1118 (2012). https://doi.org/10.2478/s11532-012-0012-7

    Article  Google Scholar 

  46. J. Zhu, S.X. Zhao, X. Wu, Y.F. Wang, L. Yu, C.W. Nan, Wrapping RGO/MoO2/carbon textile as supercapacitor electrode with enhanced flexibility and areal capacitance. Electrochim. Acta 282, 784–791 (2018)

    Article  Google Scholar 

  47. P. Zhang, L. Zou, H. Hu, M. Wang, J. Fang, Y. Lai, J. Li, 3D Hierarchical carbon microflowers decorated with MoO2 nanoparticles for lithium ion batteries. Electrochim. Acta 250, 219–227 (2017)

    Article  Google Scholar 

  48. P.A. Spevack, N. McIntyre, A. Raman, XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J. Phys. Chem. 97, 11020–11030 (1993). https://doi.org/10.1021/j100144a020

    Article  Google Scholar 

  49. M.A. Pin, Sabir Hussain, Yuan Lin and Zihai Cheng, FeS2 /carbon hybrids on carbon cloth: a highly efficient and stable counter electrode for dye-sensitized solar cell, Sustainable. Energy Fuels 3, 1749–1756 (2019). https://doi.org/10.1039/C9SE00240E

    Article  Google Scholar 

  50. D. Momodu, A. Bello, K. Oyedotun, F. Ochai-Ejeh, J. Dangbegnon, M. Madito, N. Manyala, Enhanced electrochemical response of activated carbon nanostructures from tree-bark biomass waste in polymer-gel active electrolytes. RSC Adv. 7, 37286–37295 (2017). https://doi.org/10.1039/c7ra05810a

    Article  ADS  Google Scholar 

  51. M. Akia, N. Salinas, S. Luna, E. Medina, A. Valdez, J. Lopez, J. Ayala, M. Alcoutlabi, K. Lozano, In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries. J Mater Sci 54, 13479–13490 (2019)

    Article  ADS  Google Scholar 

  52. N. Mahmood, Y. Yao, J.-W. Zhang, L. Pan, X. Zhang, J.-J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms. Chall. Prospect. Sol. Adv. Sci. 5–2, 1700464 (2017). https://doi.org/10.1002/advs.201700464

    Article  Google Scholar 

  53. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015)

    Article  ADS  Google Scholar 

  54. N.-U.-A. Babar, Y.F. Joya, H. Khalil, F. Hussain, K.S. Joya, Thin-film iron-oxide nanobeads as bifunctional electrocatalyst for high activity overall water splitting. Int. J. Hydrogen Energy 46, 7885–7902 (2021)

    Article  Google Scholar 

  55. S.N. Sapakal, A. Khan, J.M. Khobragade, A.V. Kadam, Synthesis of MoO2 on steel substrate for hydrogen evolution reaction in water splitting: a new approach. J. Mater. Sci. 58, 1403–1414 (2023). https://doi.org/10.1007/s10853-022-08079-7

    Article  ADS  Google Scholar 

  56. A.V. Kadam, S.B. Patil, Polyaniline globules as a catalyst for WO3 nanoparticles for supercapacitor application. Mater. Res. Express 5, 085036 (2018). https://doi.org/10.1088/2053-1591/aad406

    Article  ADS  Google Scholar 

  57. C. Beasley, M.K. Gnanamani, E. Santillan-Jimenez, M. Martinelli, W.D. Shafer, S.D. Hopps, N. Wanninayake, D.-Y. Kim, Effect of metal work function on hydrogen production from photocatalytic water splitting with MTiO 2 catalysts. Chem. Sel. 5, 1013–1019 (2020). https://doi.org/10.1002/slct.201904151

    Article  Google Scholar 

  58. M.T. Greiner, L. Chai, M.G. Helander, W.-M. Tang, Lu. Zheng-Hong, Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 23, 215–226 (2013). https://doi.org/10.1002/adfm.201200993

    Article  Google Scholar 

Download references

Acknowledgements

This research work is fully funded by DST-SERB, New Delhi under the project [grant number (EEQ/2021/000633)].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, data collection, data curation and writing—original draft preparation was performed by SNS. Editing was handled by Ayesha Khan, Writing—review & editing, supervision was performed by JMK and AVK, all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anamika V. Kadam.

Ethics declarations

Conflicts of interest

The authors declare no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 363 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapakal, S.N., Khan, A., Khobragade, J.M. et al. MoO2-based cost effective catalyst for hydrogen evolution via water splitting. Appl. Phys. A 129, 700 (2023). https://doi.org/10.1007/s00339-023-06987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06987-2

Keywords

Navigation