Skip to main content
Log in

Appealing optoelectronic properties of p-type Cu-G transparent conductor prepared by Cu sputtering and thermal reduction of graphene oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article discusses the optoelectronic performance of Cu-graphene (Cu-G) film prepared by the sputtering of the Cu layer on graphene oxide (GO) before the thermal reduction process. Surface diffusion of Cu intervenes with the reduction mechanism of GO in a good way if the Cu is sufficiently thick after 120 s sputtering. The best crystal quality of Cu-G is indicated by the Raman spectra lowest ΓG = 69 cm–1 and highest ID/IG = 1.63. Originally, the thickness of Cu after 120 s sputtering is 12 nm while the thickness of spin-coated GO is 5.52 nm. After the thermal reduction, Cu-G is 2.1 nm with an additional 0.3 nm residual layer underneath. The optical transmittance of Cu-G film at λ = 550 nm is 89.3% and it has two surface plasmon resonances at 4.58 eV and 5.28 eV. The peaks of absorption at high energy UV possibly allow Cu-G to boost its electrical conductivity without costing its transmittance in visible light. In a dark condition, the measured sheet resistance is 54.07 Ω sq–1, Hall mobility of holes majority carriers is 37.48 cm2 V–1 s–1, and dc conductivity is 7.88 × 104 S cm–1. They can be translated into a relatively high figure-of-merit of transparent conductor equivalent to 59.9. The stable processing of Cu-G film makes it promising to integrate this process into the fabrication of relevant optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. C. Tong, M. Kumar, J.H. Yun, J. Kim, S.J. Kim, High-quality ITO/Al-ZnO/n-Si heterostructures with junction engineering for improved photovoltaic performance. Appl. Sci. 10, 5285 (2020)

    Google Scholar 

  2. J.J. Lin, Z.Q. Li, Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. Condens. Matter 26, 343201 (2014)

    Google Scholar 

  3. S. Li, Y.L. Cao, W.H. Li, Z.S. Bo, A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 40, 2712–2729 (2021)

    Google Scholar 

  4. A. Tombak, M. Benhaliliba, Y.S. Ocak, T. Kilicoglu, The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results Phys. 5, 314–321 (2015)

    ADS  Google Scholar 

  5. K.H.L. Zhang, K. Xi, M.G. Blamire, R.G. Egdell, P-type transparent conducting oxides. J. Phys. Condens. Matter. 28, 383002 (2016)

    Google Scholar 

  6. N. Selvakumar, B. Vadivel, D.V.S. Rao, S.B. Krupanidhi, H.C. Barshilia, Controlled growth of high-quality graphene using hot-filament chemical vapor deposition. Appl. Phys. A 122, 943 (2016)

    ADS  Google Scholar 

  7. J. Zhang, L. Lin, K. Jia, L. Sun, H. Peng, Z. Liu, Controlled growth of single-crystal graphene films. Adv. Mater. 32, 1903266 (2019)

    Google Scholar 

  8. M. Saeed, Y. Alshammari, S.A. Majeed, E. Al-Nasrallah, Chemical vapour deposition of graphene–synthesis, characterisation, and applications: a review. Molecules 25, 3856 (2020)

    Google Scholar 

  9. J. Lim, K. Choi, J.R. Rani, J.S. Kim, C. Lee, J.H. Kim, S.C. Jun, Terahertz, optical, and Raman signatures of monolayer graphene behavior in thermally reduced graphene oxide films. J. Appl. Phys. 113, 183502 (2013)

    ADS  Google Scholar 

  10. I.K. Moon, J.I. Kim, H. Lee, K. Hur, W.C. Kim, H. Lee, 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 3, 1112 (2013)

    ADS  Google Scholar 

  11. T. Zhang, J. Chen, Graphene/InP Schottky junction near-infrared photodetectors. Appl. Phys. A 126, 832 (2020)

    ADS  Google Scholar 

  12. H. Tian, A. Hu, Q. Liu, X. He, X. Guo, Interface-induced high responsivity in hybrid graphene/GaAs photodetector. Adv. Opt. Mater. 8, 1901741 (2020)

    Google Scholar 

  13. Y. Zhao, H. Chen, B. Yang, J. Chen, High response plasma-enhanced graphene/GaAs near-infrared photodetector. Mater. Sci. Semicond. Process. 157, 107331 (2023)

    Google Scholar 

  14. A.J. Wirth-Lima, P.P. Alves-Sousa, W. Bezerra-Fraga, Graphene/silicon and 2D-MoS2/silicon solar cells: a review. Appl. Phys. A 125, 241 (2019)

    ADS  Google Scholar 

  15. S. Jankauskas, R. Gudaitis, A. Vasiliauskas, A. Guobiene, S. Meskinis, The graphene structure’s effects on the current-voltage and photovoltaic characteristics of directly synthesized graphene/n-Si(100) diodes. Nanomaterials 12, 1640 (2022)

    Google Scholar 

  16. M. Kim, M.A. Rehman, K.M. Kang, Y. Wang, S. Park, H.S. Lee, S.B. Roy, S.H. Chun, C.A. Singh, S.C. Jun, H.H. Park, The role of oxygen defects engineering via passivation of the Al2O3 interfacial layer for the direct growth of a graphene-silicon Schottky junction solar cell. Appl. Mater. Today 26, 101267 (2022)

    Google Scholar 

  17. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: optical and electrical properties. AIP Adv. 5, 047143 (2015)

    ADS  Google Scholar 

  18. A. Zivkovic, N.H. de Leeuw, Exploring the formation of intrinsic p-type and n-type defects in CuO. Phys. Rev. Mater. 4, 074606 (2020)

    Google Scholar 

  19. J.H. Lee, J. Kim, M. Jin, H.J. Na, H. Lee, C. Im, Y.S. Kim, Cu2O p-type thin-film transistors with enhanced switching characteristics for CMOS logic circuit by controlling deposition condition and annealing in the N2 atmosphere. ACS Appl. Electron. Mater. 5, 1123–1130 (2023)

    Google Scholar 

  20. M.F. Abdullah, N.J.N.B. Nazim, N. Soriadi, S.A.M. Badaruddin, M.R.M. Hussin, M.I. Syono, Thermal characterization of multi-layer graphene heat spreader by Pt/Cu/Ti micro-coil. Phys. Status Solidi A 218, 2100301 (2021)

    ADS  Google Scholar 

  21. C.V. Thompson, Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012)

    ADS  Google Scholar 

  22. J.H. Cho, J.J. Gorman, S.R. Na, M. Cullinan, Growth of monolayer graphene on nanoscale copper-nickel alloy thin films. Carbon 115, 441–448 (2017)

    Google Scholar 

  23. M.F. Abdullah, Anti-dewetting of Cu thin film on nanostructured black Si template for continuous CVD growth of monolayer graphene. Mod. Phys. Lett. B 36, 2250108 (2022)

    ADS  Google Scholar 

  24. L. Klemeyer, H. Park, J. Huang, Geometry-dependent thermal reduction of graphene oxide solid. ACS Mater. Lett. 3, 511–515 (2021)

    Google Scholar 

  25. M.H. Ani, M.A. Kamarudin, A.H. Ramlan, E. Ismail, M.S. Sirat, M.A. Mohamed, M.A. Azam, A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. J. Mater. Sci. 53, 7095–7111 (2018)

    ADS  Google Scholar 

  26. J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018)

    Google Scholar 

  27. M.F. Abdullah, S.F.A. Rahman, A.M. Hashim, Investigation on transition diode properties of rGO-GO/n-Si heterojunction. Phys. Status Solidi A 216, 1900064 (2019)

    ADS  Google Scholar 

  28. M. Gomaa, G.A. Fattah, Optical properties of graphene oxide thin film reduced by low-cost diode laser. Appl. Phys. A 126, 519 (2020)

    ADS  Google Scholar 

  29. A. Sinha, P. Ranjan, A.D. Thakur, Effect of characterization probes on the properties of graphene oxide and reduced graphene oxide. Appl. Phys. A 127, 585 (2021)

    ADS  Google Scholar 

  30. M.C. Prado, D. Jariwala, T.J. Marks, M.C. Hersam, Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis. Appl. Phys. Lett. 102, 193111 (2013)

    ADS  Google Scholar 

  31. M.F. Abdullah, N.J.N.B. Nazim, N.A. Aziz, M.R.M. Hussin, Conversion of vertical-to-planar graphene by morphing of copper nanostructure during a moderate temperature plasma process. Vacuum 206, 111539 (2022)

    ADS  Google Scholar 

  32. D. Lopez-Diaz, M. Lopez Holgado, J.L. Garcia-Fierro, M.M. Velazquez, Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C. 121, 20489–20497 (2017)

    Google Scholar 

  33. A.Y. Lee, K. Yang, N.D. Anh, C. Park, S.M. Lee, T.G. Lee, M.S. Jeong, Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 536, 147990 (2021)

    Google Scholar 

  34. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, X. Jin, C. Hwang, J. Eom, Modification of the structural and electrical properties of graphene layers by Pt adsorbates. Sci. Technol. Adv. Mater. 15, 055002 (2014)

    Google Scholar 

  35. A. Piazza, F. Giannazzo, G. Buscarino, G. Fisichella, A. La Magna, F. Roccaforte, M. Cannas, F.M. Gelardi, S. Agnello, Graphene p-type doping and stability by thermal treatments in molecular oxygen controlled atmosphere. J. Phys. Chem. C 119, 22718–22723 (2015)

    Google Scholar 

  36. M.M. Haidari, H. Kim, J.H. Kim, M. Park, H. Lee, J.S. Choi, Doping effect in graphene-graphene oxide interlayer. Sci. Rep. 10, 8258 (2020)

    ADS  Google Scholar 

  37. J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012)

    ADS  Google Scholar 

  38. S. Gupta, P. Joshi, J. Narayan, Electron mobility modulation in graphene oxide by controlling carbon melt lifetime. Carbon 170, 327–337 (2020)

    Google Scholar 

  39. P. Gangwar, S. Singh, N. Khare, Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry. Appl. Phys. A 124, 620 (2018)

    ADS  Google Scholar 

  40. J. Hu, P. Liu, L. Chen, Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au∕SiO2. Appl. Opt. 51, 1357–1360 (2012)

    ADS  Google Scholar 

  41. M.F. Abdullah, Defect repair of thermally reduced graphene oxide by gold nanoparticles as a p-type transparent conductor. J. Electron. Mater. 50, 6795–6803 (2021)

    ADS  Google Scholar 

  42. R. Negishi, M. Akabori, T. Ito, Y. Watanabe, Y. Kobayashi, Band-like transport in highly crystalline graphene films from defective graphene oxides. Sci. Rep. 6, 28936 (2016)

    ADS  Google Scholar 

  43. M. Karyaoui, D. Ben Jemia, M. Daoudi, A. Bardaoui, A. Boukhachem, M. Amlouk, R. Chtourou, Physical properties of graphene oxide GO-doped ZnO thin films for optoelectronic application. Appl. Phys. A 127, 134 (2021)

    ADS  Google Scholar 

  44. A. Kocanali, E. Apaydin Varol, An experimental study on the electrical and thermal performance of reduced graphene oxide coated cotton fabric. Int. J. Energy Res. 45, 12915–12927 (2021)

    Google Scholar 

  45. F. Werner, Hall measurements on low-mobility thin films. J. Appl. Phys. 122, 135306 (2017)

    ADS  Google Scholar 

  46. R. Cao, H.X. Deng, J.W. Luo, Design principles of p-type transparent conductive materials. ACS Appl. Mater. Interfaces 11, 24837–24849 (2019)

    Google Scholar 

  47. H. Yin, J. Chen, Y. Wang, J. Wang, H. Guo, Composition dependent band offsets of ZnO and its ternary alloys. Sci. Rep. 7, 41567 (2017)

    ADS  Google Scholar 

  48. R. Nandee, M.A. Chowdhury, A. Shahid, N. Hossain, M. Rana, Band gap formation of 2D material in graphene: Future prospect and challenges. Results Eng. 15, 100474 (2022)

    Google Scholar 

  49. A. Anand, M.M. Islam, R. Meitzner, U.S. Schubert, H. Hoppe, Introduction of a novel figure of merit for the assessment of transparent conductive electrodes in photovoltaics: exact and approximate form. Adv. Energy Mater. 11, 2100875 (2021)

    Google Scholar 

  50. S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010)

    Google Scholar 

  51. H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88, 6021 (2000)

    ADS  Google Scholar 

  52. L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, D. Yang, An 8.68% efficiency chemically-doped-free graphene−silicon solar cell using silver nanowires network buried contacts. ACS Appl. Mater. Interfaces 7, 4135–4141 (2015)

    Google Scholar 

  53. Y.T. Lin, D.W. Huang, P.F. Huang, L.C. Chang, Y.T. Lai, N.H. Tai, A green approach for high oxidation resistance, flexible transparent conductive films based on reduced graphene oxide and copper nanowires. Nanoscale Res. Lett. 17, 79 (2022)

    ADS  Google Scholar 

  54. L. Dou, F. Cui, Y. Yu, G. Khanarian, S.W. Eaton, Q. Yang, J. Resasco, C. Schildknecht, K. Schierle-Arndt, P. Yang, Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors. ACS Nano 10, 2600–2606 (2016)

    Google Scholar 

  55. J.H. Kang, S. Choi, Y.J. Park, J.S. Park, N.S. Cho, S. Cho, B. Walker, D.S. Choi, J.W. Shin, J.H. Seo, Cu/graphene hybrid transparent conducting electrodes for organic photovoltaic devices. Carbon 171, 341–349 (2021)

    Google Scholar 

  56. R. Zhang, Y. Liao, Y. Zhou, J. Qian, A facile and economical process for high-performance and flexible transparent conductive film based on reduced graphene oxides and silver nanowires. J. Nanopart. Res. 22, 39 (2020)

    ADS  Google Scholar 

  57. L. He, S.C. Tjong, Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Adv. 7, 2058–2065 (2017)

    ADS  Google Scholar 

  58. J. Ning, L. Hao, M. Jin, X. Qiu, Y. Shen, J. Liang, X. Zhang, B. Wang, X. Li, L. Zhi, A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv. Mater. 29, 1605028 (2017)

    Google Scholar 

  59. M. Savchak, N. Borodinov, R. Burtovyy, M. Anayee, K. Hu, R. Ma, A. Grant, H. Li, D.B. Cutshall, Y. Wen, G. Koley, W.R. Harrell, G. Chumanov, V. Tsukruk, I. Luzinov, Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl. Mater. Interfaces 10, 3975–3985 (2018)

    Google Scholar 

  60. K. Sa, P. Mahanandia, Conducting reduced graphene oxide film as transparent electrode. Thin Solid Films 692, 137594 (2019)

    ADS  Google Scholar 

Download references

Funding

This project is internally funded by MIMOS Semiconductor (M) Sdn. Bhd.

Author information

Authors and Affiliations

Authors

Contributions

MFA conceptualization, methodology, investigation, formal analysis, visualization, writing- original draft preparation, writing—reviewing and editing.

Corresponding author

Correspondence to Mohd Faizol Abdullah.

Ethics declarations

Conflict of interest

The author declares no known competing financial interests or personal relationships that could have appeared to influence the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 377 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M.F. Appealing optoelectronic properties of p-type Cu-G transparent conductor prepared by Cu sputtering and thermal reduction of graphene oxide. Appl. Phys. A 129, 694 (2023). https://doi.org/10.1007/s00339-023-06986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06986-3

Keywords

Navigation