Skip to main content
Log in

Lattice distortion, mechanical and thermodynamic properties of (TiZrHf)C and (TiZrHf)N ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Although severe lattice distortion is one of the core effects of multicomponent materials, accurate quantitative description is still an open issue. In this paper, density functional theory (DFT) calculations based on special quasi-random structure (SQS) are used to investigate the lattice distortion of multicomponent (TiZrHf)C and (TiZrHf)N ceramics, and the influences on structural, mechanical, electronic and thermodynamic properties. The distortion in (TiZrHf)C and (TiZrHf)N is quantified by the average atomic displacement and the bond length distribution. Our results show that the distortion in (TiZrHf)N is greater than in (TiZrHf)C. Lattice distortion can improve thermodynamic stability while enhancing ductility at the expense of strength and hardness. Moreover, the influence of lattice distortion on thermal properties is further studied, suggesting that the distortion increases the vibrational entropy due to the high-temperature softening of the lattice, thereby increasing the total entropy and thermodynamic stability of ceramics. After distortion, the thermal expansion coefficient is obviously larger and the heat capacity CV and CP also increase, especially at low temperatures. Therefore, the present study is valuable for understanding and optimization of the comprehensive properties of multicomponent ceramics by tuning the lattice distortion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The corresponding authors’ data supporting this study’s findings are available upon reasonable request.

References

  1. Y. Ikeda, B. Grabowski, F. Koermann, Mater. Charact. 147, 464 (2019)

    Google Scholar 

  2. Z. Yang, Z. Wang, Q. Wu, T. Zheng, P. Zhao, J. Zhao, J. Chen, Appl. Phys. A 125, 208 (2019)

    ADS  Google Scholar 

  3. Y. Pan, D. Pu, Ceram. Int. 46, 6698 (2020)

    Google Scholar 

  4. S.-Y. Liu, C. Liu, S. Zhang, S. Liu, D.-J. Li, Y. Li, S. Wang, J. Appl. Phys. 131, 075105 (2022)

    ADS  Google Scholar 

  5. X. Chen, X. Li, J. Sun, C. Sun, J. Shi, F. Pang, H. Zhou, Appl. Phys. A 126, 146 (2020)

    ADS  Google Scholar 

  6. C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5, 295 (2020)

    ADS  Google Scholar 

  7. J. Zhou, J. Zhang, F. Zhang, B. Niu, L. Lei, W. Wang, Ceram. Int. 44, 22014 (2018)

    Google Scholar 

  8. B. Ye, T. Wen, N. Manh Cuong, L. Hao, C.-Z. Wang, Y. Chu, Acta Mater. 170, 15 (2019)

    ADS  Google Scholar 

  9. S.-Y. Hsu, C.-C. Chi, M.-Y. Lu, S.-Y. Chang, Y.-T. Lai, S.-Y. Tsai, J.-G. Duh, J. Alloys Compd. 947, 169645 (2023)

    Google Scholar 

  10. X.-F. Wei, J.-X. Liu, F. Li, Y. Qin, Y.-C. Liang, G.-J. Zhang, J. Eur. Ceram. Soc. 39, 2989 (2019)

    Google Scholar 

  11. E. Lewin, J. Appl. Phys. 127, 160901 (2020)

    ADS  Google Scholar 

  12. W.R. Jian, Z.C. Xie, S.Z. Xu, Y.Q. Su, X.H. Yao, I.J. Beyerlein, Acta Mater. 199, 352 (2020)

    ADS  Google Scholar 

  13. Q.F. He, Y. Yang, Front. Mater. 5, 42 (2018)

    ADS  Google Scholar 

  14. R.K. Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, Y.Z. Fang, Y. Zhang, J.Z. Jiang, Adv. Eng. Mater. 22, 2000466 (2020)

    Google Scholar 

  15. Y. Tong, K. Jin, H. Bei, J.Y.P. Ko, D.C. Pagan, Y. Zhang, F.X. Zhang, Mater. Des. 155, 1 (2018)

    Google Scholar 

  16. J.X. Dai et al., PhRvB 89, 165140 (2014)

    ADS  Google Scholar 

  17. D.L. Pu, Y. Pan, Ceram. Int. 48, 20438 (2022)

    Google Scholar 

  18. M.Z. Hasan, K.M. Hossain, S.K. Mitro, M. Rasheduzzaman, J.K. Modak, M.A. Rayhan, Appl. Phys. A 127, 36 (2021)

    ADS  Google Scholar 

  19. D.Y. Qu, L.K. Bao, Z.Z. Kong, Y.H. Duan, Vacuu 179, 109488 (2020)

    ADS  Google Scholar 

  20. F. Wang, X.L. Yan, T.Y. Wang, Y.Q. Wu, L. Shao, M. Nastasi, Y.F. Lu, B. Cui, Acta Mater. 195, 739 (2020)

    ADS  Google Scholar 

  21. T. Fan, F. Liu, Z. Wang, L. Liu, D. Chen, Q. Fang, P. Tang, MMTA 52, 955 (2021)

    ADS  Google Scholar 

  22. H. Meng, J.M. Duan, X.T. Chen, S. Jiang, L. Shao, B.Y. Tang, Phys. Status Solidi B Basic Solid State Phys. 258, 2100025 (2021)

    ADS  Google Scholar 

  23. Y. Pan, Int. J. Hydrogen Energy 46, 28338 (2021)

    Google Scholar 

  24. J.Y. Mo, Y.X. Wan, Z.B. Zhang, X. Wang, X.Q. Li, B.L. Shen, X.B. Liang, Rare Met. 41, 3343 (2022)

    Google Scholar 

  25. D.C. Ma, B. Grabowski, F. Kormann, J. Neugebauer, D. Raabe, Acta Mater. 100, 90 (2015)

    ADS  Google Scholar 

  26. G. Rohde et al., Phys. Rev. Lett. 121, 256401 (2018)

    ADS  Google Scholar 

  27. Z. Wen, Y. Zhao, J. Tian, S. Wang, Q. Guo, H. Hou, JMatS 54, 2566 (2018)

    ADS  Google Scholar 

  28. Y. Zhong, H. Sabarou, X.T. Yan, M. Yang, M.C. Gao, X.B. Liu, R.D. Sisson, Mater. Des. 182, 108060 (2019)

    Google Scholar 

  29. S. Akrami, P. Edalati, M. Fuji, K. Edalati, Mater. Sci. Eng. R Rep. 146, 100644 (2021)

    Google Scholar 

  30. D.L. Pu, Y. Pan, Ceram. Int. 47, 2311 (2021)

    Google Scholar 

  31. X.F. Wang, X.G. Wang, Q.Q. Yang, H.L. Dong, C. Zhang, G.J. Zhang, D.Y. Jiang, J. Am. Ceram. Soc. 104, 2436 (2021)

    Google Scholar 

  32. D.C. Tsai, Z.C. Chang, B.H. Kuo, B.C. Chen, E.C. Chen, F.S. Shieu, J. Alloys Compd. 750, 350 (2018)

    Google Scholar 

  33. S.P. Dodd, M. Cankurtaran, B. James, JMatS 38, 1107 (2003)

    ADS  Google Scholar 

  34. S. Jiang, L. Shao, T.W. Fan, J.M. Duan, X.T. Chen, B.Y. Tang, Ceram. Int. 46, 15104 (2020)

    Google Scholar 

  35. X.M. Xu, J. Wang, J. An, Y. Zhao, Q.Y. Zhang, Surf. Coat. Technol. 201, 5582 (2007)

    Google Scholar 

  36. E.K.K. Abavare, M.K.E. Donkor, S.N.A. Dodoo, O. Akoto, F.K. Ampong, B. Kwaakye-Awuah, R.K. Nkum, Comput. Mater. Sci. 137, 75 (2017)

    Google Scholar 

  37. F.-Z. Dai, B. Wen, Y. Sun, H. Xiang, Y. Zhou, J. Mater. Sci. Technol. 43, 168 (2020)

    Google Scholar 

  38. S.J. Zhao, J. Am. Ceram. Soc. 104, 1874 (2021)

    Google Scholar 

  39. A. Fantin, G.O. Lepore, A.M. Manzoni, S. Kasatikov, T. Scherb, T. Huthwelker, F. d’Acapito, G. Schumacher, Acta Mater. 193, 329 (2020)

    ADS  Google Scholar 

  40. S. Chen, Z.H. Aitken, S. Pattamatta, Z.X. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw, Y.W. Zhang, Nat. Commun. 12, 4953 (2021)

    ADS  Google Scholar 

  41. S.Y. Liu, S.X. Zhang, S.Y. Liu, D.J. Li, Z.Q. Niu, Y.P. Li, S.W. Wang, J. Eur. Ceram. Soc. 42, 3089 (2022)

    Google Scholar 

  42. T. Zerrouki, H. Rached, D. Rached, M. Caid, O. Cheref, M. Rabah, Int. J. Quantum Chem. 121, e26582 (2021)

    Google Scholar 

  43. D. Chen, X. Zhang, J. Tang, H. Cui, Y. Li, Appl. Phys. A 124, 194 (2018)

    ADS  Google Scholar 

  44. T.Q. Wen, B.L. Ye, M.C. Nguyen, M.D. Ma, Y.H. Chu, J. Am. Ceram. Soc. 103, 6475 (2020)

    Google Scholar 

  45. D.C. Tsai, Z.C. Chang, B.H. Kuo, Y.C. Liu, E.C. Chen, F.S. Shieu, Ceram. Int. 42, 14257 (2016)

    Google Scholar 

  46. T. Huang, H. Jiang, Y. Lu, T. Wang, T. Li, Appl. Phys. A 125, 180 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the financial support of the Key Project of Guangxi Scientific Foundation under Grant no. 2018GXNSFDA281010, and the high-performance computing platform of Guangxi University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. BT performed the conceptualization, funding acquisition, resources and supervision. Computational processes, data collection and analysis were performed by ND. HJ, CX and LS performed the validation. The first draft of the manuscript was written by ND and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bi-Yu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, N., Jiang, HH., Xu, CR. et al. Lattice distortion, mechanical and thermodynamic properties of (TiZrHf)C and (TiZrHf)N ceramics. Appl. Phys. A 129, 720 (2023). https://doi.org/10.1007/s00339-023-06983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06983-6

Keywords

Navigation