Skip to main content
Log in

The development of CuO-ZnO based heterojunction for detection of NO2 gas at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The goal of the current research was to develop CuO-ZnO heterojunction capable of detecting NO2 gas at room temperature. Pure CuO and CuO-ZnO composite samples were developed by changing the weight percentage of CuO and ZnO using a simple precipitation method and nominated as CZ0, CZ1, CZ2 and CZ3. Structural, optical and morphological properties of pristine CuO and heterojunctions were studied using XRD, FE-SEM, BET, XPS, FTIR and PL. Investigation of gas sensing properties revealed that the CZ2 sample (20 wt% ZnO) exhibited maximum response of 36.7% to 100 ppm of NO2 gas at room temperature. The mechanism behind the response of pristine material and CuO-ZnO was explained in detail. The development of p-n heterojunction due to the combination of p-type CuO and n-type ZnO was responsible for the increase in the gas detecting capabilities of the synthesized composite material for detecting NO2 gas at ambient temperature. Hence, the proposed approach focuses on the design of a cost-effective and sensitive gas sensor that can sense NO2 gas even at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. T.L. Guidotti, The higher oxides of nitrogen: inhalation toxicology. Environ. Res. 15(3), 443–472 (1978). https://doi.org/10.1016/0013-9351(78)90125-1

    Article  Google Scholar 

  2. E. Oh et al., High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuat. B Chem. 141(1), 239–243 (2009). https://doi.org/10.1016/j.snb.2009.06.031

    Article  Google Scholar 

  3. A. Richters, K. Kuraitis, Inhalation of NO2 and blood borne cancer cell spread to the lungs. Arch. Environ. Heal. An Int. J. 36(1), 36–39 (1981). https://doi.org/10.1080/00039896.1981.10667604

    Article  Google Scholar 

  4. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7, 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3

    Article  Google Scholar 

  5. N. Barsan, C. Simion, T. Heine, S. Pokhrel, U. Weimar, Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceramics 25, 11–19 (2010). https://doi.org/10.1007/s10832-009-9583-x

    Article  Google Scholar 

  6. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074

    Article  Google Scholar 

  7. A. Umar et al., Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application. Chem. Phys. Lett. 763, 138204 (2021). https://doi.org/10.1016/j.cplett.2020.138204

    Article  Google Scholar 

  8. C.S. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao, Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires. Appl. Phys. A 85, 241–246 (2006). https://doi.org/10.1007/s00339-006-3707-9

    Article  ADS  Google Scholar 

  9. B. Zhang et al., High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. J. Alloys Compd. 867, 159076 (2021). https://doi.org/10.1016/j.jallcom.2021.159076

    Article  Google Scholar 

  10. T. Zhou, T. Zhang, J. Deng, R. Zhang, Z. Lou, L. Wang, P-type Co3O4 nanomaterials-based gas sensor: preparation and acetone sensing performance. Sens. Actuat. B Chem. 242, 369–377 (2017). https://doi.org/10.1016/j.snb.2016.11.067

    Article  Google Scholar 

  11. K.-H. Chen, J.-S. Niu, W.-C. Liu, Study of a new hydrogen gas sensor synthesized with a sputtered cerium oxide thin film and evaporated palladium nanoparticles. IEEE Trans. Electron Devices 68(8), 4077–4083 (2021). https://doi.org/10.1109/TED.2021.3093842

    Article  ADS  Google Scholar 

  12. S. Lu et al., Sensitive H2 gas sensors based on SnO2 nanowires. Sens. Actuat. B Chem. 345, 130334 (2021). https://doi.org/10.1016/j.snb.2021.130334

    Article  Google Scholar 

  13. T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Appl. Phys. A 80, 1451–1454 (2005). https://doi.org/10.1007/s00339-004-3075-2

    Article  ADS  Google Scholar 

  14. H. Rahman, H. Dhoundiyal, A. Kumar, M.C. Bhatnagar, Fabrication and electrical surface characterization of pellets of V2O5 nanostructures for robust and portable gas sensor applications. Appl. Phys. A 129(4), 271 (2023). https://doi.org/10.1007/s00339-023-06554-9

    Article  ADS  Google Scholar 

  15. C. Li, P.G. Choi, K. Kim, Y. Masuda, High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sens. Actuat. B Chem. 367, 132143 (2022). https://doi.org/10.1016/j.snb.2022.132143

    Article  Google Scholar 

  16. X. Hu, Z. Zhu, C. Chen, T. Wen, X. Zhao, L. Xie, Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sens. Actuat. B Chem. 253, 809–817 (2017). https://doi.org/10.1016/j.snb.2017.06.183

    Article  Google Scholar 

  17. J. Zhang, H. Lu, C. Liu, C. Chen, X. Xin, Porous NiO–WO 3 heterojunction nanofibers fabricated by electrospinning with enhanced gas sensing properties. RSC Adv. 7(64), 40499–40509 (2017). https://doi.org/10.1039/C7RA07663K

    Article  ADS  Google Scholar 

  18. N.M. Vuong, N.D. Chinh, Y.-I. Lee, CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci. Rep. 6(1), 1–13 (2016). https://doi.org/10.1038/srep26736

    Article  Google Scholar 

  19. U.T. Nakate, Y.T. Yu, S. Park, High performance acetaldehyde gas sensor based on pn heterojunction interface of NiO nanosheets and WO3 nanorods. Sens. Actuat. B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130264

    Article  Google Scholar 

  20. Q. Cheng et al., Highly sensitive and fast response acetone gas sensor based on Co3O4–ZnO heterojunction assembled by porous nanoflowers. J. Mater. Sci. Mater. Electron. 34(2), 128 (2023). https://doi.org/10.1007/s10854-022-09566-y

    Article  Google Scholar 

  21. Y. Wang et al., CuO/WO3 hollow microsphere PN heterojunction sensor for continuous cycle detection of H2S gas. Sens. Actuat. B Chem. 374, 132823 (2023). https://doi.org/10.1016/j.snb.2022.132823

    Article  Google Scholar 

  22. A. Kumar, A. Sanger, A. Kumar, R. Chandra, Highly sensitive and selective CO gas sensor based on a hydrophobic SnO2/CuO bilayer. RSC Adv. 6(52), 47178–47184 (2016). https://doi.org/10.1039/C6RA06538D

    Article  ADS  Google Scholar 

  23. D. Wu, Q. Zhang, and M. Tao, LSDA+ U study of cupric oxide: Electronic structure and native point defects. Phys. Rev. B., 73 (23) 235206 (2006). https://doi.org/10.1103/PhysRevB.73.235206

  24. V.D. Patel, R. Dhar, N. Gandhi, S.R. Meher, D. Gupta, Solution-processed copper oxide thin film as efficient hole transport layer for organic solar cells. J. Electron. Mater. 51(2), 601–608 (2022). https://doi.org/10.1007/s11664-021-09313-9

    Article  ADS  Google Scholar 

  25. D. Indhira et al., Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Environ. Res. 212, 113323 (2022). https://doi.org/10.1016/j.envres.2022.113323

    Article  Google Scholar 

  26. J. Singh, S. Lee, A. Tomar, J. Kim, A. Kumar Rai, Surfactant-mediated synthesis of novel mesoporous hollow CuO nanotubes as an anode material for lithium-ion battery application. ChemistrySelect 8(1), e202203755 (2023). https://doi.org/10.1002/slct.202203755

    Article  Google Scholar 

  27. Y. Zhao, X. Zhou, W. Huang, J. Kang, G. He, High-performance copper nanowire electrode for efficient flexible organic light-emitting diode. Org. Electron. 113, 106690 (2023). https://doi.org/10.1016/j.orgel.2022.106690

    Article  Google Scholar 

  28. A.M. Youssef, S.M. Yakout, High dielectric-energy storage and ferromagnetic-superparamagnetic properties: tetra-doping CuO nanocompositions. J. Mater. Sci. Mater. Electron. 34(2), 1–19 (2023). https://doi.org/10.1007/s10854-022-09564-0

    Article  Google Scholar 

  29. Y. Xi, Z. Xiao, H. Lv, H. Sun, S. Zhai, Q. An, Construction of CuO/Cu-nanoflowers loaded on chitosan-derived porous carbon for high energy density supercapacitors. J. Colloid Interface Sci. 630, 525–534 (2023). https://doi.org/10.1016/j.jcis.2022.10.037

    Article  ADS  Google Scholar 

  30. M. Gupta, H.F. Hawari, P. Kumar, Z.A. Burhanudin, Copper oxide/functionalized graphene hybrid nanostructures for room temperature gas sensing applications. Crystals 12(2), 264 (2022). https://doi.org/10.3390/cryst12020264

    Article  Google Scholar 

  31. X. Li, Y. Shi, M. Wang, H. Wang, X. Shao, X. Sun, Ultra-sensitive TEA sensor based on bulk-like Zinc oxide nanostructures. J. Mater. Sci. Mater. Electron. 34(2), 140 (2023). https://doi.org/10.1007/s10854-022-09572-0

    Article  Google Scholar 

  32. A. Rahnama, M. Gharagozlou, Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt. Quantum Electron 44(6), 313–322 (2012). https://doi.org/10.1007/s11082-011-9540-1

    Article  Google Scholar 

  33. M.P. Geetha, P. Pratheeksha, B.K. Subrahmanya, Development of functionalized CuO nanoparticles for enhancing the adsorption of methylene blue dye. Cogent Eng. 7(1), 1783102 (2020). https://doi.org/10.1080/23311916.2020.1783102

    Article  Google Scholar 

  34. A. Thamer, A. Faisal, A. Abed, W. Khalef, Synthesis of gold-coated branched ZnO nanorods for gas sensor fabrication. J. Nanoparticle Res. 22(4), 74 (2020). https://doi.org/10.1007/s11051-020-04783-0

    Article  ADS  Google Scholar 

  35. H. Zhu et al., A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu2O-Au hierarchical heterostructures with a series of morphological evolutions. J. Mater. Chem. A 1(3), 919–929 (2013)

    Article  Google Scholar 

  36. J. Das et al., Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter 405(10), 2492–2497 (2010)

    Article  ADS  Google Scholar 

  37. X. Du, J. Huang, Y. Feng, Y. Ding, Flower− like 3D CuO microsphere acting as photocatalytic water oxidation catalyst. Chin. J. Catal. 37(1), 123–134 (2016)

    Article  Google Scholar 

  38. S. Gunalan, R. Sivaraj, R. Venckatesh, Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 1140–1144 (2012). https://doi.org/10.1016/j.saa.2012.07.096

    Article  ADS  Google Scholar 

  39. B. Toboonsung, P. Singjai, Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J. Alloys Compd. 509(10), 4132–4137 (2011). https://doi.org/10.1016/j.jallcom.2010.12.180

    Article  Google Scholar 

  40. P.S. Kumar, M. Selvakumar, S.G. Babu, S. Induja, S. Karuthapandian, CuO/ZnO nanorods: an affordable efficient pn heterojunction and morphology dependent photocatalytic activity against organic contaminants. J. Alloys Compd. 701, 562–573 (2017). https://doi.org/10.1016/j.jallcom.2017.01.126

    Article  Google Scholar 

  41. S. Sihag, R. Dahiya, S. Rani, A. Jatrana, A. Kumar, V. Kumar, Investigation of structural and optical characteristics of CuO nanoparticles calcinated at various temperatures. Indian J. Chem. Technol. 29(5), 578–582 (2022). https://doi.org/10.56042/ijct.v2925.61511

    Article  Google Scholar 

  42. K. Kannaki, P.S. Ramesh, D. Geetha, Hydrothermal synthesis of CuO nanostructure and their characterizations. Int. J. Sci. Eng. Res. 3(9), 1–4 (2012)

    Google Scholar 

  43. K. Chitra and G. Annadurai, “Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen.,” Int. food Res. J., vol. 20, no. 1, 2013.

  44. A. Fouda, S.S. Salem, A.R. Wassel, M.F. Hamza, T.I. Shaheen, Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 6(9), e04896 (2020). https://doi.org/10.1016/j.heliyon.2020.e04896

    Article  Google Scholar 

  45. V. Kumar, A. Kumar, S.S. Priyanka, A. Jatrana, in In two-dimensional (2D) nanostructures for hazardous gas sensing applications. ed. by U. By Shanker et al. (Springer Nature, Switzerland, 2022). https://doi.org/10.1007/978-3-030-69023-6

    Chapter  Google Scholar 

  46. M. Hübner, C.E. Simion, A. Tomescu-Stănoiu, S. Pokhrel, N. Bârsan, U. Weimar, Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuat. B Chem. 153(2), 347–353 (2011). https://doi.org/10.1016/j.snb.2010.10.046

    Article  Google Scholar 

  47. Y. Guo, M. Gong, Y. Li, Y. Liu, X. Dou, Sensitive, selective, and fast detection of ppb-level H2S gas boosted by ZnO-CuO mesocrystal. Nanoscale Res. Lett. 475(11), 1–9 (2016). https://doi.org/10.1186/s11671-016-1688-y

    Article  Google Scholar 

  48. Y.B. Zhang, J. Yin, L. Li, L.X. Zhang, L.J. Bie, Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens. Actuat. B Chem. 202, 500–507 (2014). https://doi.org/10.1016/j.snb.2014.05.111

    Article  Google Scholar 

  49. H. Fang, S. Li, H. Zhao, J. Deng, D. Wang, J. Li, Enhanced NO2 gas sensing performance by hierarchical CuO–Co3O4 spheres. Sens. Actuat. B Chem. 352(2), 131068 (2022). https://doi.org/10.1016/j.snb.2021.131068

    Article  Google Scholar 

  50. T.-H. Han, S.-Y. Bak, S. Kim, S.H. Lee, Y.-J. Han, M. Yi, Decoration of CuO NWs gas sensor with ZnO NPs for improving NO2 sensing characteristics. Sensors 21(6), 2103 (2021). https://doi.org/10.3390/s21062103

    Article  ADS  Google Scholar 

  51. S. Keerthana, K. Rathnakannan, Hierarchical ZnO/CuO nanostructures for room temperature detection of carbon dioxide. J. Alloys Compd. 897, 162988 (2022). https://doi.org/10.1016/j.jallcom.2021.162988

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the IIC, IIT, Roorkee, Uttarakhand, for providing necessary ads for characterization tools.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, and visualization. RD, SR, PB, AJ: conceptualization, methodology, writing—review and editing and formal analysis. AK: methodology, validation, writing—review and editing. VK: original draft, writing—review and editing, supervision, formal analysis, investigation and visualization.

Corresponding author

Correspondence to Vinay Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4881 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihag, S., Dahiya, R., Rani, S. et al. The development of CuO-ZnO based heterojunction for detection of NO2 gas at room temperature. Appl. Phys. A 129, 717 (2023). https://doi.org/10.1007/s00339-023-06982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06982-7

Keywords

Navigation