Skip to main content
Log in

Magnetic relaxation in epitaxial films with in-plane and out-of-plane anisotropies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanomagnetic materials are needed for increasing data storage capacity and suited for enhancing the performance of permanent magnets. However, their performance is controlled by magnetic switching, which is driven by a competition between thermal activation energies and anisotropy energies. Here, we elucidate the magnetic switching process in epitaxial films with in-plane and out-of-plane magnetic anisotropies. While in both media the magnetization obeys a logarithmic decay over time, a drastic difference is revealed in their magnetic viscosities. The relaxation logarithmic law is a consequence of the epitaxy itself under which the film growth is initiated through random nucleation followed by islands growth and their coalescence, leading to non-uniform structural domains. These structural domains behave like magnetic domains due to the presence of antiphase boundaries where exchange coupling is disrupted. The activation volume for both media is found to match the average size of the structural domains. The very slow relaxation process under out-of-plane anisotropy is linked to the demagnetizing field, which drastically weakens the irreversible magnetic susceptibility. A simple analytical model was developed and found to well predict and corroborate the experimental findings. This study was conducted on CoFe2O4 films epitaxially grown on (100) and (110) MgO substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. L. Néel, Ann. Géophys. 5, 99–136 (1949)

    Google Scholar 

  2. W.F. Brown Jr., Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

  3. R.J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E.J.L. McInnes, L.F. Chibotaru, R.E.P. Winpenny, Nat. Chem. 5, 673–678 (2013). https://doi.org/10.1038/nchem.1707

    Article  Google Scholar 

  4. R. Sessoli, D. Gattteschi, A. Caneschi, M.A. Novak, Nature 365, 141–143 (1993). https://doi.org/10.1038/365141a0

    Article  ADS  Google Scholar 

  5. S. Gómez-Coca, A. Urtizberea, E. Cremades, P.J. Alonso, A. Camón, E. Ruiz, F. Luis, Nat Commun. 1(5), 4300 (2014). https://doi.org/10.1038/ncomms5300

    Article  ADS  Google Scholar 

  6. D.A. Thompson, J.S. Best, IBM J. Res. Dev. 44, 311 (2000)

    Article  Google Scholar 

  7. D. Weller, A. Moser, IEEE Trans. Magn. 35, 4423 (1999)

    Article  ADS  Google Scholar 

  8. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. A240, 599–642 (1948)

    ADS  Google Scholar 

  9. Th. Gerrits, H.A.M. van den Berg, J. Hohlfeld, L. Bär, Th. Rasing, Nature 418, 509–512 (2002). https://doi.org/10.1038/nature00905

    Article  ADS  Google Scholar 

  10. R. Street, J.C. Woolley, Proc. Phys. Soc. A 62, 562 (1949)

    Article  ADS  Google Scholar 

  11. A. Lisfi, S. Pokharel, A. Alqarni, O. Akioya, W. Morgan, M. Wuttig, AIP Adv. 8, 056438 (2018)

    Article  ADS  Google Scholar 

  12. D. Erdem, N.S. Bringham, F.J. Heiligtag, N. Pilet, P. Wamicke, L.J. Heyderman, M. Niederberger, Adv. Funct. Mater. 26, 1954–1963 (2016)

    Article  Google Scholar 

  13. A. Lisfi, C.M. Williams, J. Appl. Phys. 93, 8143 (2003)

    Article  ADS  Google Scholar 

  14. R.M. Bozorth, E.F. Tilden, A.J. Williums, Phys. Rev. 99, 1788 (1955)

    Article  ADS  Google Scholar 

  15. Y. Suzuki, G. Hu, R.B. van Dover, R.J. Cava, J. Mag. Mag. Mat. 191, 1–8 (1999)

    Article  ADS  Google Scholar 

  16. A. Lisfi, C.M. Williams, L.T. Nguyen, J.C. Lodder, A. Coleman, H. Corcoran, A. Johnson, P. Chang, A. Kumar, W. Morgan, Phys. Rev. B 76, 054405 (2007)

    Article  ADS  Google Scholar 

  17. A. Lisfi, S. Pokharel, L. Salamanca-Riba, M. Wuttig, J. Appl. Phys. 117, 17B727 (2015)

    Article  Google Scholar 

  18. E.P. Wohlfarth, J. Phys. F 14, L155 (1984)

    Article  ADS  Google Scholar 

  19. L. Néel, J. Phys. Rad. 12, 339 (1951)

    Article  Google Scholar 

  20. P. Bruno, G. Bayreuther, P. Beauvillain, C. Chappert, G. Lugert, D. Renard, J.P. Renard, J. Seiden, J. Appl. Phys. 68, 5759 (1990)

    Article  ADS  Google Scholar 

  21. W. Weiss, M. Ritter, Phys. Rev. B 59, 5201 (1999)

    Article  ADS  Google Scholar 

  22. J.A. Moyer, R. Gao, P. Schiffer, L.W. Martin, Sci. Rep. 5, 10363 (2015)

    Article  ADS  Google Scholar 

  23. D.T. Margulies, F.T. Parker, M.L. Rudee, F.E. Spada, J.N. Chapman, P.R. Aitchison, A.E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997)

    Article  ADS  Google Scholar 

  24. W. Eerenstein, T. Palstra, S. Saxena, T. Hibma, Phys. Rev. Lett. 88, 247204 (2002)

    Article  ADS  Google Scholar 

  25. W. Eerenstein, T. Palstra, T. Hibma, S. Celotto, Phys. Rev. B 66, 201101 (2002)

    Article  ADS  Google Scholar 

  26. T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, W.A. Soffa, Scr. Metall. Mater. 33, 1793 (1995)

    Article  Google Scholar 

  27. F.E. Luborsky, J. Appl. Phys. 32, S171 (1961)

    Article  ADS  Google Scholar 

  28. D.E. Speliotis, J. Appl. Phys. 63, 3432 (1988)

    Article  ADS  Google Scholar 

  29. H. Miyajima, K. Sato, T. Mizoguchi, J. Appl. Phys. 47, 4669 (1976)

    Article  ADS  Google Scholar 

  30. A. Lisfi, S. Pokharel, W. Morgan, G. Warren, M. Wuttig, Nanotechnology 25, 415702 (2014)

    Article  ADS  Google Scholar 

  31. I.S. Jacobs, F.E. Luborsky, J. Appl. Phys. 28, 467 (1957)

    Article  ADS  Google Scholar 

  32. A. Lisfi, J.C. Lodder, IEEE Trans. Magn. 35, 2754 (1999)

    Article  ADS  Google Scholar 

  33. R.W. Chantrell, M. Fearon, E.P. Wohlfarth, Phys. Stat. Sol. (a) 97, 213 (1986)

    Article  ADS  Google Scholar 

  34. G.B. Ferguson, K. O’Grady, J. Popplewell, R.W. Chantrell, IEEE Trans. Magn. 25, 3449 (1989)

    Article  ADS  Google Scholar 

  35. A.-M. de Witte, K. O’Grady, G.N. Coverdale, R.W. Chantrell, J. Mag. Mag. Mat. 88, 183 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science Foundation under research grants NSF DMR 2055432, and DMR 2117180.

Author information

Authors and Affiliations

Authors

Contributions

AL designed and wrote the manuscript. He also synthesized the samples for this study, which consist of CoFe2O4 films epitaxially grown by pulsed laser deposition on (100) and (110) MgO substrates. He performed XRD, relaxation and torque measurements. FE carried out the measurement of hysteresis loops with a vibrating sample magnetometer along the directions parallel and perpendicular to the film plane. MW contributed to the TEM high resolution imaging. He edited the manuscript and provided feedback on the paper.

Corresponding author

Correspondence to Abdellah Lisfi.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisfi, A., Efe, F. & Wuttig, M. Magnetic relaxation in epitaxial films with in-plane and out-of-plane anisotropies. Appl. Phys. A 129, 716 (2023). https://doi.org/10.1007/s00339-023-06974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06974-7

Keywords

Navigation