Skip to main content
Log in

Purple-blue luminescence and magnetic properties of visible-light active novel BiMn2O5 photocatalyst by ultrasonication assisted sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, complex BiMn2O5 (BMO) nanoparticles, well known for their applications in photocatalysts, magnetoelectric sensors, actuators, non-volatile information storages, and electrochemical supercapacitors, were synthesized through novel ultrasonication assisted sol–gel synthesis route. The corresponding Rietveld refinement confirms the monophasic nature of composition in Pbam space-group symmetry with orthorhombic structure. The morphological study examines the average grain size determined to be approximately around ∼ 64.50 nm, whereas, EDAX gives the elemental analysis. The vibrational modes of Mn–O and presence of other functional groups have been explored. The coexistence of the multivalency in Mn4+ and Mn3+ valence states, which are associated with the chemical stoichiometry of the synthesized compound is confirmed. The optimization of energy band-gap was attributed to influence the disordered crystal lattice and oxygen vacancies. The interesting Photoluminescence response of BiMn2O5 NPs in visible region indicates strong purple-blue emission under excitation wavelength λex ~ 370 nm and CIE parameters. BMO nanoparticles have been evaluated as a photocatalyst for the decomposition of Rhodamine B dye under visible light illumination because of their low bandgap. In contrast, the presence of smaller nanoparticles and uncompensated spins depict M-H plot shows no saturation at high magnetic field, which manifest non-ferromagnetic correlation. The thermomagnetic study in field-cooled/zero-field-cooled modes also indicates an antiferromagnetic Neel transition at around 41 K. The results obtained from measurements and associated properties of nanoparticles give an insight of BiMn2O5 nanoparticles for possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. I.H. Lone, J. Aslam, N.R.E. Radwan, A.H. Bashal, A.F.A. Ajlouni, A. Akhter, Nanoscale Res. Lett. 14, 142 (2019). https://doi.org/10.1186/s11671-019-2961-7

    Article  ADS  Google Scholar 

  2. M.K. Verma, A. Kumar, T. Das, V. Kumar, S. Singh, V.S. Raia, D. Prajapati, R.K. Sonwani, K. Sahoob, K.D. Mandala, Mater. Technol. 36, 594–602 (2021). https://doi.org/10.1080/10667857.2020.1782061

    Article  ADS  Google Scholar 

  3. T. Ruh, D. Berkovec, F. Schrenk, C. Rameshan, Chem. Commun. 59, 3956 (2023). https://doi.org/10.1039/D3CC00456B

    Article  Google Scholar 

  4. G.V. Umoh, J.T.H. Momaca, R.P. Talamantes, G.R. George, G.H. Perez, R.L. Anton, A. Hurtado-Macias, Thin Solid Films 756, 139362 (2022). https://doi.org/10.1016/j.tsf.2022.139362

    Article  ADS  Google Scholar 

  5. J. Shi, J. Wang, H. He, Y. Lu, Z. Shi, Materials 13, 805 (2020). https://doi.org/10.3390/ma13030805

    Article  ADS  Google Scholar 

  6. V. Singh, S. Watanabe, T.K.G. Rao, G. Lakshminarayana, Mater. Sci. Eng. B. 264, 114971 (2021). https://doi.org/10.1016/j.mseb.2020.114971

    Article  Google Scholar 

  7. D.C. Celis, A.C. Rodríguez, J. Narvaez, O.M. Londono, D. Muraca, M. Knobel, N.O. Soto, A. Reiber, J.G. Ramírez, Sci. Rep. 9, 3182 (2019). https://doi.org/10.1038/s41598-019-39517-3

    Article  ADS  Google Scholar 

  8. C.M.F. Posada, A. Castro, J.M. Kiat, F. Porcher, O. Peña, M. Alguero, H. Amorín, Nat. Commun. 7, 12772 (2016). https://doi.org/10.1038/ncomms12772

    Article  ADS  Google Scholar 

  9. J. Chen, G. Ma, B. Gong, C. Deng, M. Zhang, K. Guo, R. Cui, Y. Wu, M. Lv, X. Wang, Nanomaterials 13, 429 (2023). https://doi.org/10.3390/nano13030429

    Article  Google Scholar 

  10. G. V. Umoh, J. E. L. Perez, S. F. O. Mendez, J. G. Hernandez, F. M. Trejo, R. H. Basurto, A. H. Macias, Ceram. Int., 48:22182–22187 (2022). https://doi.org/10.1016/j.ceramint.2022.04.212Y.

  11. I. Liu, J. Zhitomirsky, Power Sources 284, 377–382 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.050

    Article  ADS  Google Scholar 

  12. C. Li, S. Thampy, Y. Zheng, J.M. Kweun, Y. Ren, J.Y. Chan, H. Kim, M. Cho, Y.Y. Kim, J.W.P. Hsu, K. Cho, J. Phys. Condens. Matter. 28, 125602 (2016). https://doi.org/10.1088/0953-8984/28/12/125602

    Article  ADS  Google Scholar 

  13. A.F.G. Floresa, E. Granado, J. Appl. Phys. 101, 09M106 (2007). https://doi.org/10.1063/1.2712955

    Article  Google Scholar 

  14. E.I. Golovenchits, V.A. Sanin, A.V. Babinski, J. Exp. Theor. Phys. 85, 156–162 (1997). https://doi.org/10.1134/1.558324

    Article  ADS  Google Scholar 

  15. Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, K. Kohn, J. Phys.: Condens. Matter 20, 434206 (2008). https://doi.org/10.1088/0953-8984/20/43/434206

    Article  ADS  Google Scholar 

  16. D.K. Shukla, S. Mollah, R. Kumar, P. Thakur, K.H. Chae, W.K. Choi, A. Banerjee, J. Appl. Phys. 104, 1–10 (2008). https://doi.org/10.1063/1.2964072

    Article  Google Scholar 

  17. V.T. Santana, L. Walmsley, I. Fier, R.A. Eichel, P. Jakes, I. Chumak, A. Ozarowski, J. Van Tol, O.R. Nascimento, Solid State Commun. 207, 40–43 (2015). https://doi.org/10.1016/j.ssc.2015.02.007

    Article  ADS  Google Scholar 

  18. K.S. Kumar, D.P. Joseph, S.P. Raja, P. Manimuthu, C. Venkateswaran, AIP Conf. Proc. 1349, 1155–1156 (2011). https://doi.org/10.1063/1.3606273

    Article  ADS  Google Scholar 

  19. A. Muñoz, J.A. Alonso, M.T. Casais, M.J.M. Lopez, J.L. Martínez, M.T.F. Díaz, J. Phys. Rev. B 65, 1444423 (2002). https://doi.org/10.1103/PhysRevB.65.144423

    Article  Google Scholar 

  20. C. Vecchini, L. C. Chapon, P. J. Brown, T. Chatterji, S. Park, S-W. Cheong, P. G. Radaelli, Phys. Rev. B 77, 134434. https://doi.org/10.1103/PhysRevB.77.13443

  21. H. Kimura, S. Kobayashi, S. Wakimoto, Y. Noda, K. Kohn, Ferroelectrics 354, 77–85 (2007). https://doi.org/10.1080/00150190701454602

    Article  ADS  Google Scholar 

  22. M.S. Alam, R. Hossain, M.A. Basith, Ceram. Int. 44, 1594–1602 (2018). https://doi.org/10.1016/j.ceramint.2017.10.080

    Article  Google Scholar 

  23. V.M. Gaikwad, S. Goyal, P. Yanda, A. Sundaresan, S. Chakraverty, A.K. Ganguli, J. Magn. Magn. Mater. 452, 120–128 (2018). https://doi.org/10.1016/j.jmmm.2017.11.101

    Article  ADS  Google Scholar 

  24. H. Felhi, M. Smari, A. Bajorek, K. Nouri, E. Dhahri, L. Bessais, Prog. Nat. Sci.: Mater. Int. 29, 198–209 (2019). https://doi.org/10.1016/j.pnsc.2019.04.001

    Article  Google Scholar 

  25. R. Jia, J. Han, X. Wu, C.L. Wu, Y.H. Huang, W. Huang, Mater. Res. Bull. 43, 1702–1708 (2008). https://doi.org/10.1016/j.materresbull.2007.07.023

    Article  Google Scholar 

  26. Z.H. Sun, B.L. Cheng, S. Dai, K.J. Jin, Y.L. Zhou, H.B. Lu, Z.H. Chen, G.Z. Yang, J. Appl. Phys. 99, 084105 (2006). https://doi.org/10.1063/1.2190716

    Article  ADS  Google Scholar 

  27. P.F. Newhouse, S.E.R. Lillo, G. Li, L. Zhou, A. Shinde, D. Guevarra, S.K. Suram, E. Soedarmadji, M.H. Richter, X. Qu, K. Persson, J.B. Neaton, J.M. Gregoire, Chem. Mater. 29, 10027–10036 (2017). https://doi.org/10.1021/acs.chemmater.7b03591

    Article  Google Scholar 

  28. N. Li, K. Yao, G. Gao, Z. Sun, L. Lia, Phys. Chem. Chem. Phys. 13, 9418–9424 (2011). https://doi.org/10.1039/C0CP02252

    Article  Google Scholar 

  29. J. Chakrabartty, C. Harnagea, M. Celikin, F. Rosei, R. Nechache, Nat. Photon. 12, 271–276 (2018). https://doi.org/10.1038/s41566-018-0137-0

    Article  ADS  Google Scholar 

  30. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  31. D.K. Shukla, S. Mollah, R. Kumar, P. Thakur, K.H. Chae, W.K. Choi, A. Banerjee, J. Appl. Phys. 104, 033707 (2008). https://doi.org/10.1063/1.2964072

    Article  ADS  Google Scholar 

  32. J. Zhang, B. Xu, X.F. Li, K.L. Yao, Z.L. Liu, J. Magn. Magn. Mater. 323, 1599–1605 (2011). https://doi.org/10.1016/j.jmmm.2010.12.040

    Article  ADS  Google Scholar 

  33. S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, L. Kumar, J. Phys. Chem. Solids 151, 109928 (2021). https://doi.org/10.1016/j.jpcs.2020.109928

    Article  Google Scholar 

  34. S. Hanif, M. Hassan, S. Riaz, S. Atiq, S.S. Hussain, S. Naseem, G. Murtaza, Results Phys. 7, 3190–3195 (2017). https://doi.org/10.1016/j.rinp.2017.08.061

    Article  ADS  Google Scholar 

  35. D.P. Mezcua, R. Sirera, R. Jimenez, I. Bretos, C.D. Dobbelaere, A. Hardy, M.K.V. Bael, M.L. Calzad, J. Mater. Chem. C 2, 8750 (2014). https://doi.org/10.1039/C4TC00960F

    Article  Google Scholar 

  36. N. Bhardwaj, A. Gaur, K. Yadav, Appl. Phys. A: Mater. Sci. Process. 123, 429 (2017). https://doi.org/10.1007/s00339-017-1042-y

    Article  ADS  Google Scholar 

  37. S. Wu, Y. Mei, J. Alloys Compd. 583, 309–312 (2014). https://doi.org/10.1016/j.jallcom.2013.08.131

    Article  Google Scholar 

  38. S. Hao Li, G.P. Lei, H. Peng, Ferroelectrics 520, 135–143 (2017). https://doi.org/10.1080/00150193.2017.1375302

    Article  ADS  Google Scholar 

  39. S. Dutta, S. Pal, S. De, New J. Chem. 42, 10161 (2018). https://doi.org/10.1039/c8nj00859k

    Article  Google Scholar 

  40. K.S. Pugazhvadivu, L. Balakrishnan, G. Mohan Rao, K. Tamilarasan, AIP Adv. 4, 117105 (2014). https://doi.org/10.1063/1.4901184

    Article  ADS  Google Scholar 

  41. A. Molak, A.Z. Szeremeta, J. Koperski, Electron. Mater. 3, 101–114 (2022). https://doi.org/10.3390/electronicmat3010010

    Article  Google Scholar 

  42. C. Stella, N. Soundararajan, K. Ramachandran, Superlattices Microstruct. 71, 203–210 (2014). https://doi.org/10.1016/j.spmi.2014.03.044

    Article  ADS  Google Scholar 

  43. A.C. Gandhi, C.L. Cheng, S.Y. Wu, Nanomaterials 10, 1023 (2020). https://doi.org/10.3390/nano10061023

    Article  Google Scholar 

  44. A.M. Toufiq, F. Wang, Q.U.A. Javed, Q. Li, Y. Li, M. Khan, Mater. Express 4, 258–262 (2014). https://doi.org/10.1166/mex.2014.1167

    Article  Google Scholar 

  45. B.J. Rani, G. Ravi, R. Yuvakkumar, S.I. Hong, Vacuum 166, 279–285 (2019). https://doi.org/10.1016/j.vacuum.2019.05.029

    Article  ADS  Google Scholar 

  46. B.J. Rani, M. Gowsalya, G. Ravi, R.Y. Kumar, S.I. Hong, Mater. Res. Express 6, 095090 (2019). https://doi.org/10.1088/2053-1591/ab3333

    Article  ADS  Google Scholar 

  47. H. Yang, S.F. Wang, T. Xian, Z.Q. Wei, W.J. Feng, Mater. Lett. 65, 884–886 (2011). https://doi.org/10.1016/j.matlet.2010.11.068

    Article  Google Scholar 

  48. B. Revathi, L. Balakrishnan, S. Pichaimuthu, A.N. Grace, N.K. Chandar, J. Mater. Sci.: Mater. Electron. 31, 22487–22497 (2020). https://doi.org/10.1007/s10854-020-04750-4

    Article  Google Scholar 

  49. Y. Zhou, L. Shuai, X. Jiang, F. Jiao, J. Yu Adv, Powder Technol. 26, 439–447 (2015). https://doi.org/10.1016/j.apt.2014.11.018

    Article  Google Scholar 

  50. K.S. Kumar, C. Venkateswaran, J. Phys. D: Appl. Phys. 44, 325001 (2011). https://doi.org/10.1088/0022-3727/44/32/325001

    Article  Google Scholar 

  51. I.K. Schuller, R. Morales, X. Batlle, U. Nowak, G. Güntherodt, J. Magn. Magn. Mater. 416, 2–9 (2016). https://doi.org/10.1016/j.jmmm.2016.04.065

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the University Grant Commission and the Department of Science and Technology in New Delhi for their financial assistance provided under the UGC DAS-I and DST-FIST Phase-II programmes. We also extend our thanks to Dr. Mukul Gupta (UGC-DAE, Indore) and Prof. Fozia Z. Haque (Maulana Azad National Institute of Technology, Bhopal) for providing admittance to measurement facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

KD: experimentation, conceptualization, result analysis, writing the original draft; SD: methodology, reviewing and editing; AM: reviewing and editing, RKS: resources, SC: resources, CP: resources NKG: resources, supervision, conceptualization.

Corresponding authors

Correspondence to Kumud Dubey or N. K. Gaur.

Ethics declarations

Conflict of interest

There is no conflict of interest in the reported report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, K., Dubey, S., Modi, A. et al. Purple-blue luminescence and magnetic properties of visible-light active novel BiMn2O5 photocatalyst by ultrasonication assisted sol–gel method. Appl. Phys. A 129, 715 (2023). https://doi.org/10.1007/s00339-023-06971-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06971-w

Keywords

Navigation