Skip to main content
Log in

Terahertz vector Bessel beams based on all-dielectric metasurface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We design an all-dielectric silicon metasurface adopting an elliptical-cylindrical unit structure. In the case of circularly polarized light incidence, we can obtain terahertz vector Bessel beams with radial or azimuthal polarization characteristics. We demonstrate that the spatial position polarization control of the beam can be achieved by rotating the unit structure with quarter-wave plate function. In addition, the transmission phase is used to offset the extra phase brought by the polarization control, and the function of converting the left-handed or right-handed circularly polarized incident light into a radially or azimuthally polarized Bessel beam is successfully realized at the frequency of 0.71 THz. This research provides feasibility for the generation of vector Bessel beams in the terahertz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data were generated or analyzed in the presented research.

References

  1. X. Jing, Y. Xu, H. Gan, Y. He, Z. Hong, High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access 7, 144945–144956 (2019)

    Google Scholar 

  2. L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Z. Hong, Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure. Opt. Laser Technol. 123, 105949 (2020)

    Google Scholar 

  3. B. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, X. Jing, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. J. Electromag. Waves Appl. 33(11), 1375–1390 (2019)

    ADS  Google Scholar 

  4. X. He, Tunable terahertz graphene metamaterials. Carbon 82, 229–237 (2015)

    Google Scholar 

  5. X. He, X. Zhong, F. Lin, W. Shi, Investigation of graphene assisted tunable terahertz metamaterials absorber. Optical Materials Express 6(2), 331–342 (2016)

    ADS  Google Scholar 

  6. X. He, F. Liu, F. Lin, W. Shi, Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt. Lett. 46(3), 472–475 (2021)

    ADS  Google Scholar 

  7. X. He, F. Liu, F. Lin, W. Shi, Tunable terahertz Dirac semimetal metamaterials. J. Phys. D Appl. Phys. 54(23), 235103 (2021)

    ADS  Google Scholar 

  8. J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, W. Shi, Investigation of graphene supported terahertz elliptical metamaterials. Phys. E: Low-Dimens. Syst. Nanostruct. 124, 114309 (2020)

    Google Scholar 

  9. B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, X. Jing, Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett. 61(10), 2385–2391 (2019)

    Google Scholar 

  10. X. Jing, X. Gui, P. Zhou, Z. Hong, Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter. J. Lightwave Technol. 36(12), 2322–2327 (2018)

    ADS  Google Scholar 

  11. L. Jiang, Z. Yu, W. Zhao, Z. Yang, Y. Peng, Y. Zhou, X. Lin, S. Jin, Self-assembled MXene-Au multifunctional nanomaterials with various shapes for label-free SERS detection of pathogenic bacteria and photothermal sterilization. Anal. Chem. 95(2), 1721–1730 (2023)

    Google Scholar 

  12. Z. Yu, L. Jiang, R. Liu, W. Zhao, Z. Yang, J. Zhang, S. Jin, Versatile self-assembled MXene-Au nanocomposites for SERS detection of bacteria, antibacterial and photothermal sterilization. Chem. Eng. J. 426, 131914 (2021)

    Google Scholar 

  13. J. Li, J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, J. Yao, Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 182, 506–515 (2021)

    Google Scholar 

  14. J. Leng, J. Peng, A. Jin, D. Cao, D. Liu, X. He, F. Liu, Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol. 146, 107570 (2022)

    Google Scholar 

  15. X. He, F. Liu, F. Lin, W. Shi, 3D Dirac semimetal supported tunable TE modes. Ann. Phys. 534(4), 2100355 (2022)

    Google Scholar 

  16. X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, L. Wang, Analysis of the sinusoidal nanopatterning grating structure. Opt. Laser Technol. 48, 160–166 (2013)

    ADS  Google Scholar 

  17. W. Wang, X. Jing, J. Zhao, Y. Li, Y. Tian, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl. 47(2), 183–198 (2017)

    Google Scholar 

  18. L. Jiang, B. Fang, Z. Yan, C. Li, J. Fu, H. Gan, X. Jing, Improvement of unidirectional scattering characteristics based on multiple nanospheres array. Microw. Opt. Technol. Lett. 62(6), 2405–2414 (2020)

    Google Scholar 

  19. X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, S. Zhuang, Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mater. 7(3), 1801328 (2019)

    Google Scholar 

  20. J. Li, J. Li, C. Zheng, Z. Yue, D. Yang, S. Wang, J. Yao, Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum. Appl. Phys. Lett. 119(24), 241105 (2021)

    ADS  Google Scholar 

  21. M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, L. Zhou, Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl. 8(1), 16 (2019)

    ADS  Google Scholar 

  22. Z. Liu, L. Qi, F. Lan, C. Lan, J. Yang, X. Tao, A VO2 film-based multifunctional metasurface in the terahertz band. Chin. Opt. Lett. 20, 013602 (2022)

    ADS  Google Scholar 

  23. S. Cai, W. Hu, Y. Liu, J. Ning, S. Feng, C. Jin, L. Huang, X. Li, Optical fiber hydrogen sensor using metasurfaces composed of palladium. Chin. Opt. Lett. 20, 053601 (2022)

    ADS  Google Scholar 

  24. C. Wang, H.X. Xu, Y. Wang, C. Zhang, S. Wang, M. Wang, X. Yang, Heterogeneous amplitude—phase metasurface for distinct wavefront manipulation. Adv. Photon. Res. 2(10), 2100102 (2021)

    Google Scholar 

  25. H.X. Xu, G. Hu, Y. Li, L. Han, J. Zhao, Y. Sun, C.W. Qiu, Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light Sci. Appl. 8(1), 3 (2019)

    ADS  Google Scholar 

  26. C. Han, B. Zhang, H. Wang, J. Ding, Metamaterial perfect absorber with morphology-engineered meta-atoms using deep learning. Opt. Express 29(13), 19955–19963 (2021)

    ADS  Google Scholar 

  27. S. Teng, Q. Zhang, H. Wang, L. Liu, H. Lv, Conversion between polarization states based on a metasurface. Photon. Res. 7(3), 246–250 (2019)

    Google Scholar 

  28. X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Teng, Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology 31(13), 135201 (2020)

    ADS  Google Scholar 

  29. R. Liu, L. Jiang, Z. Yu, X. Jing, X. Liang, D. Wang, B. Yang, C. Lu, W. Zhou, S. Jin, MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy. Sens. Actuat. B-Chem. 333, 129581 (2021)

    Google Scholar 

  30. J. Li, J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, J. Yao, Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces. Appl. Phys. Lett. 118(22), 221110 (2021)

    ADS  Google Scholar 

  31. X. Jiang, H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, G. Chen, All-dielectric metalens for terahertz wave imaging. Opt. Express 26(11), 14132–14142 (2018)

    ADS  Google Scholar 

  32. D. Lin, A.L. Holsteen, E. Maguid, P. Fan, P.G. Kik, E. Hasman, M.L. Brongersma, Polarization-independent metasurface lens employing the Pancharatnam–Berry phase. Opt. Express 26(19), 24835–24842 (2018)

    ADS  Google Scholar 

  33. H. Lv, X. Lu, Y. Han, Z. Mou, S. Teng, Multifocal metalens with a controllable intensity ratio. Opt. Lett. 44(10), 2518–2521 (2019)

    ADS  Google Scholar 

  34. J. Li, R. Jin, J. Geng, X. Liang, K. Wang, M. Premaratne, W. Zhu, Design of a broadband metasurface Luneburg lens for full-angle operation. IEEE Trans. Antennas Propag. 67(4), 2442–2451 (2018)

    ADS  Google Scholar 

  35. Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, X. Luo, Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci. Rep. 5(1), 17733 (2015)

    ADS  Google Scholar 

  36. C. Zhang, T. Xue, J. Zhang, Z. Li, L. Liu, J. Xie, J. Yao, G. Wang, X. Ye, W. Zhu, Terahertz meta-biosensor based on high-q electrical resonance enhanced by the interference of toroidal dipole. Biosens. Bioelectron. 214, 114493 (2022)

    Google Scholar 

  37. C. Zhang, T. Xue, J. Zhang, L. Liu, J. Xie, G. Wang, J. Yao, W. Zhu, X. Ye, Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 11, 101–109 (2022)

    ADS  Google Scholar 

  38. J. Zhang, N. Mu, L. Liu, J. Xie, H. Feng, J. Yao, T. Chen, W. Zhu, Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron. 185, 113241 (2021)

    Google Scholar 

  39. J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, W. Zhu, Dynamic scattering steering with graphene-based coding metamirror. Adv. Opt. Mater. 8(19), 2000683 (2020)

    Google Scholar 

  40. X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, W. Zhu, High-efficiency transmissive programmable metasurface for multimode OAM generation. Adv. Opt. Mater. 8(17), 2000570 (2020)

    Google Scholar 

  41. H.X. Xu, C. Wang, Y. Wang et al., Spin-encoded wavelength-space multitasking Janus metasurfaces. Adv. Opt. Mater. 9(11), 2100190 (2021)

    Google Scholar 

  42. A. Trombettoni, F. Scazza, F. Minardi, G. Roati, F. Cappelli, L. Consolino, A. Smerzi, P. De Natale, Quantum simulating the electron transport in quantum cascade laser structures. Adv. Quantum Technol. 4(10), 2100044 (2021)

    Google Scholar 

  43. S.E. Crawford, R.A. Shugayev, H.P. Paudel, Lu. Ping, M. Syamlal, P.R. Ohodnicki, B. Chorpening, R. Gentry, Y. Duan, Quantum sensing for energy applications: review and perspective. Adv. Quantum Technol. 4(8), 2100049 (2021)

    Google Scholar 

  44. Z.-Y. Xue, Hu. Yong, Topological photonics on superconducting quantum circuits with parametric couplings. Adv. Quantum Technol. 4(9), 2100017 (2021)

    Google Scholar 

  45. L. Hua, H. Cheng, Y. Wang, H. Yang, Y. Liu, Y. Yang, S. Li, Bidirectional radiation high-gain antenna based on phase gradient metasurface. Appl. Phys. B 127(9), 136 (2021)

    ADS  Google Scholar 

  46. J. Li, J. Li, C. Zheng, S. Wang, M. Li, H. Zhao, J. Yao, Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189–199 (2021)

    Google Scholar 

  47. H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, S. Teng, Metasurface cylindrical vector light generators based on nanometer holes. New J. Phys. 21(12), 123047 (2019)

    Google Scholar 

  48. H.X. Xu, G. Hu, M. Jiang, S. Tang, Y. Wang, C. Wang, J. Zhou, Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Adv. Mater. Technol. 5(1), 1900710 (2020)

    Google Scholar 

  49. S.N. Khonina, N.L. Kazanskiy, S.V. Karpeev, M.A. Butt, Bessel beam: significance and applications—a progressive review. Micromachines 11(11), 997 (2020)

    Google Scholar 

  50. A. Novitsky, C.W. Qiu, H. Wang, Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107(20), 203601 (2011)

    ADS  Google Scholar 

  51. F.O. Fahrbach, P. Simon, A. Rohrbach, Microscopy with self-reconstructing beams. Nat. Photon. 4(11), 780–785 (2010)

    ADS  Google Scholar 

  52. M. Duocastella, C.B. Arnold, Bessel and annular beams for materials processing. Laser Photon. Rev. 6(5), 607–621 (2012)

    ADS  Google Scholar 

  53. H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics 8(2), 317–324 (2019)

    Google Scholar 

  54. R. Shugayev, J. Devkota, S. Crawford, Lu. Ping, M. Buric, Giant microwave spontaneous emission enhancements in planar aperture waveguide structures. Adv. Quantum Technol. 4(6), 2000151 (2021)

    Google Scholar 

  55. M.R. Akram, G. Ding, K. Chen, Y. Feng, W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater. 32(12), 1907308 (2020)

    Google Scholar 

  56. J. Zhang, X. Wei, I.D. Rukhlenko, H.T. Chen, W. Zhu, Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photon. 7(1), 265–271 (2019)

    Google Scholar 

  57. M.R. Akram, X. Bai, R. Jin, G.A. Vandenbosch, M. Premaratne, W. Zhu, Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag. 67(7), 4650–4658 (2019)

    ADS  Google Scholar 

  58. C. Jin, W. Wu, L. Cao, B. Gao, J. Chen, W. Cai, M. Ren, J. Xu, Fabrication of lithium niobate metasurfaces via a combination of FIB and ICP-RIE. Chin. Opt. Lett. 20, 113602 (2022)

    ADS  Google Scholar 

  59. P. Wang, F. He, J. Liu, F. Shu, B. Fang, T. Lang, X. Jing, Z. Hong, Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum. Photon. Res. 10, 2743–2750 (2022)

    Google Scholar 

  60. Y. Zhu, Lu. Binbin, Z. Fan, F. Yue, X. Zang, A.V. Balakin, A.P. Shkurinov, Y. Zhu, S. Zhuang, Geometric metasurface for polarization synthesis and multidimensional multiplexing of terahertz converged vortices. Photon. Res. 10, 1517–1532 (2022)

    Google Scholar 

  61. C. Gheorghiu, M. Cerchez, E. Aktan, R. Prasad, F. Yilmaz, N. Yilmaz, V. Leca, Fabrication of micrometre-sized periodic gratings in free-standing metallic foils for laser–plasma experiments. High Power Laser Sci. Eng. 10, e3010000 (2022). https://doi.org/10.1017/hpl.2021.57

    Article  Google Scholar 

  62. G. Wang, J. Song, Y. Chen, S. Ren, P. Ma, W. Liu, P. Zhou, Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality. High Power Laser Sci. Eng. 10, e2204000 (2022). https://doi.org/10.1017/hpl.2022.12

    Article  Google Scholar 

  63. T. Liu, M. Zhu, W. Du, J. Shi, J. Sun, Y. Chai, J. Shao, A nodule dome removal strategy to improve the laser-induced damage threshold of coatings. High Power Laser Sci. Eng. 10, e3005000 (2022). https://doi.org/10.1017/hpl.2022.24

    Article  Google Scholar 

  64. C. Pfeiffer, A. Grbic, Controlling vector Bessel beams with metasurfaces. Phys. Rev. Appl. 2(4), 044012 (2014)

    ADS  Google Scholar 

  65. F. Yue, D. Wen, J. Xin, B.D. Gerardot, J. Li, X. Chen, Vector vortex beam generation with a single plasmonic metasurface. ACS Photon. 3(9), 1558–1563 (2016)

    Google Scholar 

  66. Y. Xu, H. Zhang, Q. Li, X. Zhang, Q. Xu, W. Zhang, W. Zhang, Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics 9(10), 3393–3402 (2020)

    Google Scholar 

  67. H.B. Yang, N.Y. Kim, Microcavity exciton-polariton quantum spin fluids. Adv. Quantum Technol. 5(7), 2100137 (2022)

    Google Scholar 

  68. Z. Cai, C. Wu, J. Jiang, Y. Ding, Z. Zheng, F. Ding, Phase-change metasurface for switchable vector vortex beam generation. Opt. Express 29(26), 42762–42771 (2021)

    ADS  Google Scholar 

  69. R. Xia, X. Jing, X. Gui, Y. Tian, Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express 7(3), 977–988 (2017)

    ADS  Google Scholar 

  70. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, G. Shi, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt. Laser Technol. 95, 56–62 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key R&D Program of Zhejiang Province (Grant no.2021C01027); Natural Science Foundation of Zhejiang Province (Nos. LZ21A040003 and LY20F050007, LY22F050001); National Natural Science Foundation of China (NSFC) (Nos. 62175224).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study’s calculation, analysis, and design. ZZ and CL wrote the first draft of the manuscript, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chenxia Li or Xufeng Jing.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Li, C. & Jing, X. Terahertz vector Bessel beams based on all-dielectric metasurface. Appl. Phys. A 129, 699 (2023). https://doi.org/10.1007/s00339-023-06970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06970-x

Keywords

Navigation