Skip to main content
Log in

Gain enhancement of CPW-fed hexagonal shaped antenna inspired by HCSRR metamaterial for multiband operation using frequency selective surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel compact coplanar waveguide (CPW) fed hexagonal shaped metamaterial unit cell inspired antenna for multi-band operation is proposed in this article. The gain of the proposed antenna is enhanced using frequency selective surface (FSS) as reflector. Initially, a hexagonal shaped CPW-fed monopole antenna is designed with the dimensions of 30 × 30 × 1.6 mm3 on FR4 substrate for the resonant frequency of 4.5 GHz and a proposed unequal width of hexagonal metamaterial unit cell is inspired on the antenna for obtaining the other two resonating frequencies at 1.7 GHz and 3.4 GHz. The gain achieved by this antenna is 2.4 dBi. To enhance the gain of the antenna, the FSS is introduced as the reflector. The proposed antenna with FSS is providing the enhanced gain of 9 dBi. Antenna parameters such as reflection coefficient, E-plane and H-plane radiation patterns, gain and FSS characteristics such as band stop, band pass, reflection phase are analyzed through simulation and validated through measurements. In addition, the angular stability of the proposed FSS structure is analyzed and found as 40°. The proposed technique can be adopted for increasing the gain of the multi-band antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not available.

References

  1. S. Rajasri, R.B. Rani, CPW-fed octagonal-shaped metamaterial-inspired multiband antenna on frequency selective surface for gain enhancement. Appl. Phys. A 128, 594 (2022)

    ADS  Google Scholar 

  2. G. Singh, B.K. Kanaujia, V.K. Pandey, D. Gangwar, S. Kumar, Design of compact dual-band patch antenna loaded with D-shaped complementary split ring resonator. J. Electromagn. Waves Appl. 33(16), 2096–2111 (2019)

    ADS  Google Scholar 

  3. R. Rajkumar, K.K. Usha, A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. AEU Int. J. Electron. C. 70(5), 599–604 (2016)

    Google Scholar 

  4. W.C. Liu, C.M. Wu, N.C. Chu, A compact CPW-fed slotted patch antenna for dual-band operation. IEEE Antennas Wirel. Propag. Lett. 9, 110–113 (2010)

    ADS  Google Scholar 

  5. N.T. Selvi, P.T. Selvan, S.P.K. Babu, R. Pandeeswari, Multiband metamaterial-inspired antenna using split ring resonator. Comput. Electr. Eng. 84, 106613 (2020)

    Google Scholar 

  6. A.L. Kozlovskiy, M.V. Zdorovets, Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 30, 11819–11832 (2019)

    Google Scholar 

  7. A.I. Stognij, S.A. Sharko, A.I. Serokurova, S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.A. Ketsko, V.P. Dyakonov, H. Szymczak, D.A. Vinnik, S.A. Gudkova, Preparation and investigation of the magnetoelectric properties in layered cermet structures. Ceram. Int. 45, 13030–13036 (2019)

    Google Scholar 

  8. C. Du, D. Zhou, H.H. Guo, Y.Q. Pang, H.Y. Shi, Y.F. Liu, J.Z. Su, C. Singh, S. Trukhanov, A. Trukhanov, L. Panina, Z. Xu, Ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on antireflection coating. Nanoscale 12, 9769–9775 (2020). https://doi.org/10.1039/C9NR10668E

    Article  Google Scholar 

  9. C. Du, D. Zhou, H.H. Guo, Y.Q. Pang, H.Y. Shi, W.F. Liu, C. Singh, S. Trukhanov, A. Trukhanov, Z. Xu, Active control scattering manipulation for realization of switchable EIT-like response metamaterial. Opt. Commun. 483, 126664 (2021)

    Google Scholar 

  10. S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater. 398, 49–53 (2016)

    ADS  Google Scholar 

  11. A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017)

    ADS  Google Scholar 

  12. R.S. Daniel, R. Pandeeswari, S. Raghavan, Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications. Appl. Phys. A 124(8), 1–7 (2018)

    Google Scholar 

  13. R.B. Rani, S.K. Pandey, Printed CPW-fed dual-band antenna using square closed-ring and square split-ring resonator. Appl. Phys. A 126(8), 1–8 (2020)

    Google Scholar 

  14. S. Dey, S. Mondal, P.P. Sarkar, Single feed circularly polarized antenna loaded with complementary split ring resonator (CSRR). Progr. Electromagn. Res. 78, 175–184 (2019)

    Google Scholar 

  15. A.V. Trukhanov, S.S. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015)

    ADS  Google Scholar 

  16. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, Phase transformations in FeCo–Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron. 32, 16694–16705 (2021)

    Google Scholar 

  17. R. Kumar, N. Kushwaha, R.V. Ram Krishna, Design of ultra-wideband hexagonal patch slot antenna for high-gain wireless applications. J. Electromagn. Waves Appl. 28(16), 2034–2048 (2014)

    ADS  Google Scholar 

  18. C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 2015)

    Google Scholar 

  19. K. Singh, S. Patil, A. Naik, S. Kadam, Hexagonal microstrip patch antenna design for UWB application. ITM Web Conf. EDP Sci. 44, 02004 (2022)

    Google Scholar 

  20. M. Jagadish, A.S. Pradeep, Design of hexagonal shaped split ring resonator for multi-resonant behaviour. Bonfring Int. J. Res. Commun. Eng. 6, 20–23 (2016)

    Google Scholar 

  21. F. Bilotti, A. Toscano, L. Vegni, Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans. Antennas Propag. 55(8), 2258–2267 (2007)

    ADS  Google Scholar 

  22. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71(3), 036617 (2005)

    ADS  Google Scholar 

  23. X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco Jr., J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70(1), 016608 (2004)

    ADS  Google Scholar 

  24. L.M. Si, W. Zhu, H.J. Sun, A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna. IEEE Antennas Wirel. Propag. Lett. 12, 305–308 (2013)

    ADS  Google Scholar 

  25. S.I. Rosaline, S. Raghavan, Design of split ring antennas for WLAN and WiMAX applications. Microw. Opt. Technol. Lett. 58(9), 2117–2122 (2016)

    Google Scholar 

  26. R. Pandeeswari, A compact meandered CPW-fed antenna with asymmetrical ground plane for 5.8 GHz RFID applications with multiple split ring resonator. Progr. Electromagn. Res. 71, 125–131 (2017)

    Google Scholar 

  27. R. Samson Daniel, R. Selvaraj, A low-profile spilt ring monopole antenna loaded with hexagonal split ring resonator for RFID applications. Progr. Electromagn. Res. 92, 169–179 (2020)

    Google Scholar 

  28. G. Geetharamani, T. Aathmanesan, Design of metamaterial antenna for 2.4 GHz WiFi applications. Wirel. Pers. Commun. 113(4), 2289–2300 (2020)

    Google Scholar 

  29. B.A. Munk, Frequency selective surfaces: theory and design (Wiley, New York, 2000)

    Google Scholar 

  30. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202 (2019)

    Google Scholar 

  31. A.L. Kozlovskiy, D.I. Shlimas, M.V. Zdorovets, Synthesis, structural properties and shielding efficiency of glasses based on TeO2-(1–x) ZnO-xSm2O3. J. Mater. Sci. Mater. Electron. 32, 12111–12120 (2021)

    Google Scholar 

  32. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, H. Szymczak, Magnetic properties of La 0.70 Sr 0.30 MnO 2.85 anion-deficient manganite under hydrostatic pressure. J. Exp. Theor. Physics. Lett. 83, 33–36 (2006)

    Google Scholar 

  33. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, K. Kadyrzhanov, Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 20(17), 4851 (2020)

    ADS  Google Scholar 

  34. J.D. Kraus, R.J. Marhefka, A.S. Khan, Antennas and Wave Propagation (Tata McGraw-Hill Education, New York, 2006)

    Google Scholar 

  35. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, V.V. Oliynyk, A.V. Trukhanov, S.V. Trukhanov, M.O. Borovoy, P.O. Teselko, V.L. Launets, O.A. Syvolozhskyi, K.A. Astapovich, Efect of magnetic fillers and their orientation on the electrodynamic properties of BaFe12xGaxO19 (x = 0.1–1.2)—epoxy composites with carbon nanotubes within GHz range. Appl. Nanosci. 10, 4747–4752 (2020)

    ADS  Google Scholar 

  36. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, V.V. Oliynyk, V.V. Zagorodnii, S.V. Trukhanov, A.V. Trukhanov, Electromagnetic properties of carbon nanotubes/BaFe12xGaxO19/epoxy composites with random and oriented filler distribution. Nanomaterials 11, 2873 (2021)

    Google Scholar 

  37. S.V. Trukhanov, Investigation of stability of ordered manganites. J. Exp. Theor. Phys. 101(3), 513–520 (2005)

    ADS  Google Scholar 

  38. A. Kozlovskiy, I. Kenzhina, Z.A. Alyamova, M. Zdorovets, Optical and structural properties of AlN ceramics irradiated with heavy ions. Opt. Mater. 91, 130–137 (2019)

    ADS  Google Scholar 

  39. U. Din, S. Ullah, M.R. Akram, UWB monopole antenna backed by single layer FSS for high gain antenna applications, in Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW) (2022), pp. 119–122

  40. A. Amsaveni, K. Anusha, A circularly polarized triangular slot reconfigurable antenna for wireless applications. Int. J. Pure Appl. Math. 116(11), 81–89 (2017)

    Google Scholar 

  41. F. Gunes, M.A. Belen, P. Mahouti, Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications. Microw. Opt. Technol. Lett. 60(5), 1160–1164 (2018)

    Google Scholar 

  42. S. Kundu, A. Chatterjee, S.K. Jana, S.K. Parui, A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface. Radio Eng. 27(2), 448–454 (2018)

    Google Scholar 

  43. A. Kumar, A. De, R.K. Jain, Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application. Progr. Electromagn. Res. Lett. 98, 41–48 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajasri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasri, S., Boopathi Rani, R. Gain enhancement of CPW-fed hexagonal shaped antenna inspired by HCSRR metamaterial for multiband operation using frequency selective surface. Appl. Phys. A 129, 702 (2023). https://doi.org/10.1007/s00339-023-06968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06968-5

Keywords

Navigation