Skip to main content
Log in

Physical, electrochemical, and catalytic attributes of Mx–Bi–V–O (Mx = Al, Fe, Co, and Ni) nanocomposites for the fabrication of chromene derivatives

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Considering that in the previous work of the group, the physical, electrochemical and catalytic properties of Bi–V–O samples without doping were studied, in this research work we decided to investigate the said properties for samples doped with different ions to compare data and results. Hydrothermal fabrication of some Mx-doped Bi–V–O (M = doped metal) mixed metal oxides was reported in the present study. Several standard techniques, such as energy dispersive X-ray, field emission scanning electron microscopy (FESEM), X-ray powder diffraction, transmission electron microscopy (TEM), ultraviolet–visible (UV–Vis), cyclic voltametry (CV), and vibrating sample magnetometer (VSM), were employed to specify the virtues of the prepared samples. XRD data confirmed that Bi2V2O7 and BiVO4 were the main crystal phases in the mixture of the products. FESEM and TEM images showed that the samples had particle and rod morphologies. The presence of strong spectra in the range of visible light were confirmed using the UV–Vis spectroscopy. The prepared composites' direct band gap energy (Eg) values were among 2 and 5 eV. According to VSM analysis, the results revealed that the samples showed weak magnetic behavior. The highest magnetic property was considered with the intercalating of Fe into the crystal system. Electrochemical properties measured by CV analysis showed that the samples had considerable charge discharge-specific capacitance values. Besides, the samples showed weak oxidation–reduction peaks indicating the possible battery and, or electrocatalyst application. The catalytic performance of the substance was studied for the synthesis of chromene derivatives. A high yield was obtained when ultrasound irradiation was used. In the following, we intend to study the photocatalytic and antibacterial activity of the synthesized samples (pure and doped samples) and compare the results with the components which used in the nanocomposite structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7

Similar content being viewed by others

Data availability

All data have been given in the article and supporting information.

References

  1. A. Molinari, R. Argazzi, A. Maldotti, J. Mol. Catal. A Chem. 372, 23–28 (2013)

    Google Scholar 

  2. X.V. Doorslaer, K. Demeestere, P.M. Heynderickx, M. Caussyn, H.V. Langenhove, F. Devlieghere, A. Vermeulen, J. Dewulf, Appl. Catal. B. 138, 333–341 (2013)

    Google Scholar 

  3. L.Z. Pei, S. Wang, Y.K. Xie, H.Y. Yu, Y.H. Guo, J. Alloys Compd. 587, 625–631 (2013)

    Google Scholar 

  4. S. Sorokina, R. Enjalbert, P. Baules, A. Castro, J. Galy, J. Solid State Chem. 144, 379–387 (1999)

    ADS  Google Scholar 

  5. S. Beg, N.A.S. Al-Areqi, Philos. Mag. 89, 1279–1294 (2009)

    ADS  Google Scholar 

  6. S. Khademinia, M. Behzad, H. Samari Jahromi, RSC Adv. 5, 24313–24318 (2015)

    ADS  Google Scholar 

  7. P. Millan, J.M. Rojo, A. Castro, Mater. Res. Bull. 35, 835–845 (2000)

    Google Scholar 

  8. M. Dragomir, M. Valant, Ceram. Int. 39, 5963–5966 (2013)

    Google Scholar 

  9. N. Ramadass, T. Palanisamy, J. Gopalakrishnan, G. Aravamudan, M.V.C. Sastri, Solid State Commun. 17, 545–547 (1975)

    ADS  Google Scholar 

  10. L. Wang, X. Shi, Y. Jia, H. Cheng, L. Wang, Q. Wang, Chin. Chem. Lett. 32, 1869–1878 (2021)

    Google Scholar 

  11. O. Monfort, G. Plesch, Environ. Sci. Pol. Res. 25, 19362–19379 (2018)

    Google Scholar 

  12. C.S. Praveen, L. Maschio, M. Rérat, V. Timon, M. Valant, Phys. Rev. B. 96, 165152 (2017)

    ADS  Google Scholar 

  13. B. Scola Rodrigues, C. Martins Branco, P. Corio, J.S. Souza, Cryst. Growth Des. 20, 3673–3685 (2020)

    Google Scholar 

  14. B. Khaledi-koureh, L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani. J. Mol. Struct. 1277, 134832 (2023)

    Google Scholar 

  15. A. Poursattar Marjani, F. Asadzadeh, A. Danandeh Asl, Sci. Rep. 12, 22173 (2022)

    ADS  Google Scholar 

  16. S. Bikas, A. Poursattar Marjani, S. Bibak, H. SarreshtehdarAslaheh, Sci. Rep. 13, 2564 (2023)

    ADS  Google Scholar 

  17. L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, E. Nozad, Sci. Rep. 12, 19942 (2022)

    ADS  Google Scholar 

  18. L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, P. GozaliBalkanloo, Res. Chem. Intermed. 48, 2973–2986 (2022)

    Google Scholar 

  19. M. Khashaei, L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, E. Nozad, Sci. Rep. 12, 8585 (2022)

    ADS  Google Scholar 

  20. E.A.A. Hafez, M.H. Elnagdi, A.G.A. Elagamey, F.M.A.A. El-Taweel, Heterocycles 26, 903–907 (1987)

    Google Scholar 

  21. G.P. Ellis, The chemistry of heterocyclic compounds, in Chromenes, chromenes, and chromenes. ed. by A. Weissberger, E.C. Taylor (Wiley, New York, 1977)

    Google Scholar 

  22. W.O. Foye, Principi di Chimica Farmaceutica (Padova, Piccin, 1991)

    Google Scholar 

  23. S. Zavar, Arab. J. Chem. 10, S67–S70 (2017)

    Google Scholar 

  24. L. Kafi-Ahmadi, A. Poursattar Marjani, E. Nozad, Appl. Organomet. Chem. 35, e6271 (2021)

    Google Scholar 

  25. L. Zhang, X. Yang, L. Zhang, H. Shu, Y. Jia, L. Qi, Y. Han, R. Wang, J Nanopart Res. 24, 268 (2022)

    Google Scholar 

  26. J. Huo, H. Wei, L. Fu, C. Zhao, C. He, Chin. Chem. Lett. 34, 107261 (2023)

    Google Scholar 

  27. H. Dai, S. Xiong, Y. Zhu, J. Zheng, L. Huang, C. Zhou, J. Deng, X. Zhang, Chin. Chem. Lett. 33, 2590–2594 (2022)

    Google Scholar 

  28. H. Li, L. Wang, Y. Zhu, P. Jiang, X. Huang, Chin. Chem. Lett. 32, 2229–2232 (2021)

    Google Scholar 

  29. Z. Zhang, Z.-W. Hou, H. Chen, P. Li, L. Wang, Green Chem. 25, 3543–3548 (2023)

    Google Scholar 

  30. M.M. Heravi, B. Baghernejad, H.A. Oskooie, J. Chin. Chem. Soc. 55, 659–662 (2008)

    Google Scholar 

  31. T.-S. Jin, J.-C. Xiao, S.-J. Wang, T.-S. Li, Ultrason. Sonochem. 11, 393–397 (2004)

    Google Scholar 

  32. L. Kafi-Ahmadi, S. Khademinia, R. Esmaeili, J. Appl. Chem. 16, 153–166 (2021). https://doi.org/10.22075/CHEM.2021.20994.1872

    Article  Google Scholar 

  33. H. Eshghi, S. Damavandi, G.H. Zohuri, Syn. React. Inorg. Metal-Org. Nano-Metal Chem. 41, 1067–1073 (2011)

    Google Scholar 

  34. B. Liu, L.J. Wu, Y.Q. Zhao, L.Z. Wang, M.Q. Cai, RSC Adv. 6, 92473–92478 (2016)

    ADS  Google Scholar 

  35. M. Mousavi, S. Tabatabai Yazdi, G.H. Khorrami, J. Nanostruct. 11, 105–113 (2021)

    Google Scholar 

  36. A. Hakimyfard, M. Samimifar, S. Ostadjoola, S. Khademinia, L. Kafi-Ahmadi, Cryst. Res. Technol. 57, 2200044 (2022)

    Google Scholar 

  37. C. Obuah, M.K. Ainooson, J. Darkwa, RSC Adv. 8, 5362–5371 (2018)

    ADS  Google Scholar 

  38. K. Sebayang, D. Aryanto, S. Simbolon, C. Kurniawan, S.F. Hulu, T. Sudiro, M. Ginting, P. Sebayang, I.O.P. Conf, Ser. Mater. Sci. Eng. 309, 012119 (2018)

    Google Scholar 

  39. I. Ali, C. Peng, D. Lin, D. Saroj, I. Naz, Z.M. Khan, M. Sultan, M. Ali, J. Environ. Manage. 234, 273–289 (2019)

    Google Scholar 

  40. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 4, 2826–2830 (2011)

    Google Scholar 

  41. S. De, C. Purcell, J. Murley, P. Flouda, S. Shah, M. Green, J. Lutkenhaus, Adv. Mater. Interfaces. 5, 1801237 (2018)

    Google Scholar 

  42. R.S. Kate, R.J. Deokate, Mater. Sci. Energy Technol. 3, 830–839 (2020)

    Google Scholar 

  43. Z. Wu, L.P. Sun, T. Xia, L.H. Huo, H. Zhao, A. Rougier, J.C. Grenier, J. Power Sources. 334, 86–93 (2016)

    ADS  Google Scholar 

  44. M. Ebrahimi, S. Abdolmohammadi, R. Kia-Kojoori, J. Chin. Chem. Soc. 67, 1895–1902 (2020)

    Google Scholar 

  45. S. Kozuch, J.M.L. Martin, ACS Catal. 2, 2787–2794 (2012)

    Google Scholar 

  46. M. Kargar Karkhah, H. Kefayati, S. Shariati, Appl. Organomet. Chem. 33, e5139 (2019)

    Google Scholar 

  47. S. Maddila, O.A. Abafe, H.N. Bandaru, S.N. Maddila, P. Lavanya, N. Seshadri, S.B. Jonnalagadda, Arab. J. Chem. 12, 3814–3824 (2019)

    Google Scholar 

  48. R. Ballini, G. Bosica, M.L. Conforti, R. Maggi, A. Mazzacanni, P. Righi, G. Sartori, Tetrahedron 57, 1395–1398 (2001)

    Google Scholar 

  49. H. Mehrabi, N. Kamali, J. Iran. Chem. Soc. 9, 599–605 (2012)

    Google Scholar 

  50. M. Khodajoo, S. Sayyahi, S.J. Saghanezhad, Russ. J. Gen. Chem. 86, 1177–1181 (2016)

    Google Scholar 

  51. M.S. Rao, B.S. Chhikara, R. Tiwari, A.N. Shirazi, K. Parang, A. Kumar, Chem. Biol. Interfaces. 2, 362–372 (2012)

    Google Scholar 

  52. K. Gong, H.L. Wang, Z.-L. Fang Liu, Catal. Commun. 9, 650–653 (2008)

    Google Scholar 

  53. S. Balalaie, S. Ramezanpour, M. Bararjanian, J.H. Gross, Synth. Commun. 38, 1078–1089 (2008)

    Google Scholar 

  54. A.R. Moosavi-Zare, M.A. Zolfigol, O. Khaledian, V. Khakyzadeh, M.D. Farahani, M.H. Beyzavi, H.G. Kruger, Chem. Eng. J. 248, 122–127 (2014)

    Google Scholar 

  55. M. Tajbakhsh, M. Kariminasab, H. Alinezhad, R. Hosseinzadeh, P. Rezaee, M. Tajbakhsh, H. JanatianGazvini, M. Azizi Amiri, J. Iran. Chem. Soc. 12, 1405–1414 (2015)

    Google Scholar 

  56. B. Sadeghi, I. Zarepour, J. Nanostruct. Chem. 5, 305–311 (2015)

    Google Scholar 

  57. B. Karami, M. Farahi, M. Bazrafshan, S. Khodabakhshi, S. Afr, J. Chem. 67, 109–112 (2014)

    Google Scholar 

  58. L. Kheirkhah, M. Mamaghani, N. Mahmoodi, A. Yahyazadeh, S.S. MirnezamiZiabari, J. Chem. Res. 41, 21–24 (2016)

    Google Scholar 

  59. B. Baghernejad, S. Koosha, JACR 14, 19–25 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Urmia University for supporting the research.

Author information

Authors and Affiliations

Authors

Contributions

MA-M: Data curation; methodology; visualization. LK-A: Conceptualization; project administration; supervision; validation; writing–original draft. APM: Supervision; software; investigation; writing–review and editing.

Corresponding author

Correspondence to Leila Kafi-Ahmadi.

Ethics declarations

Conflicts of interest

There is no confict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 976 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi-Mirabadi, M., Kafi-Ahmadi, L. & Poursattar Marjani, A. Physical, electrochemical, and catalytic attributes of Mx–Bi–V–O (Mx = Al, Fe, Co, and Ni) nanocomposites for the fabrication of chromene derivatives. Appl. Phys. A 129, 718 (2023). https://doi.org/10.1007/s00339-023-06967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06967-6

Keywords

Navigation