Skip to main content
Log in

Influence of pre-sintering on the nanosecond pulsed laser ablation patterns of spin-coated silver nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser ablation can be used to repair misprinted patterns in printed electronics. The properties of the conductive ink varied with sintering temperature. This property variation significantly affected the ablation process. Thus, we compared the pulsed laser scanning ablation of dried Ag nanoparticle (NP) layers, which were sintered at 150 ℃, and sintered at 200 ℃ with quantitative evaluations. With higher thermal diffusion, the AgNP layer sintered at higher temperatures had more protruding Ag parts at the ablated line boundary. Ablation threshold fluence values of 264, 547, and 1370 mJ/cm2 were obtained for the Ag NP layers that were dried, sintered at 150 ℃, and sintered at 200 ℃ using D2-law fittings, respectively. For the ablation process, the increase in the protruding Ag parts and the increase in the ablation threshold fluence would be problematic. For the sintered AgNP layers, D2-law predicted the ablation threshold fluence quite well. The sintering temperature of the Ag NPs affects the ablation phenomenon by changing the surface morphology and physical properties of the pre-sintered layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request from the authors.

References

  1. A. Hussain, H. Lee, Y. Moon, H. Kang, S. Moon, J. Hwang, Temperature estimation during pulsed laser sintering of silver nanoparticles. Appl. Sci. 12, 3467 (2022)

    Article  Google Scholar 

  2. Y.H. Wang, D.X. Du, H. Xie, X.B. Zhang, K.W. Lin, K. Wang, E. Fu, Printability and electrical conductivity of silver nanoparticle-based conductive inks for inkjet printing. J. Mater. Sci. Mater. Electron. 32, 496–508 (2021). https://doi.org/10.1007/s10854-020-04828-z

    Article  Google Scholar 

  3. A. Alam, G. Saeed, S.M. Hong, S. Lim, Development of 3d-printed MWCNTs/AC/BNNTs ternary composite electrode material with high-capacitance performance. Appl. Sci. 11, 2636 (2021). https://doi.org/10.3390/app11062636

    Article  Google Scholar 

  4. I. Lee, A. Hussain, H.L. Lee, Y.J. Moon, J.Y. Hwang, S.J. Moon, The effect of current supply duration during stepwise electrical sintering of silver nanoparticles. Metals (Basel). 11, 1878 (2021). https://doi.org/10.3390/met11111878

    Article  Google Scholar 

  5. D. Kim, A. Hussain, H.L. Lee, Y.J. Moon, J. Hwang, S.J. Moon, Stepwise current increment sintering of silver nanoparticle structures. Crystals 11, 1264 (2021). https://doi.org/10.3390/cryst11101264

    Article  Google Scholar 

  6. S. Lai, G. Casula, P.C. Ricci, P. Cosseddu, A. Bonfiglio, All-organic, low voltage, transparent and compliant organic field-effect transistor fabricated by means of large-area, cost-effective techniques. Appl. Sci. 10, 6656 (2020). https://doi.org/10.3390/APP10196656

    Article  Google Scholar 

  7. H.H. Lee, K. Sen Chou, K.C. Huang, Inkjet printing of nanosized silver colloids. Nanotechnology. 16, 2436–2441 (2005). https://doi.org/10.1088/0957-4484/16/10/074

    Article  ADS  Google Scholar 

  8. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/34/345202

    Article  Google Scholar 

  9. J. Perelaer, A.W.M. De Laat, C.E. Hendriks, U.S. Schubert, Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J. Mater. Chem. 18, 3209–3215 (2008). https://doi.org/10.1039/b720032c

    Article  Google Scholar 

  10. D. Kim, J. Moon, Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem. Solid-State Lett. 8, J30–J33 (2005). https://doi.org/10.1149/1.2073670

    Article  Google Scholar 

  11. M. Moras, C. Martínez-Domingo, R. Escudé, C. Herrojo, F. Paredes, L. Terés, F. Martín, E. Ramon, Programmable organic chipless rfid tags inkjet printed on paper substrates. Appl. Sci. 11, 7832 (2021). https://doi.org/10.3390/app11177832

    Article  Google Scholar 

  12. S.H. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, J. Chung, D. Poulikakos, Nanosecond laser ablation of gold nanoparticle films. Appl. Phys. Lett. 89, 141126 (2006). https://doi.org/10.1063/1.2360241

    Article  ADS  Google Scholar 

  13. S.H. Ko, H. Pan, D.J. Hwang, J. Chung, S. Ryu, C.P. Grigoropoulos, D. Poulikakos, High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2802302

    Article  Google Scholar 

  14. J. Chung, S. Han, D. Lee, S. Ahn, C.P. Grigoropoulos, J. Moon, S.H. Ko, Nanosecond laser ablation of silver nanoparticle film. Opt. Eng. 52, 024302 (2013). https://doi.org/10.1117/1.oe.52.2.024302

    Article  ADS  Google Scholar 

  15. A. Miotello, R. Kelly, Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A Mater. Sci. Process. 69(Suppl), S67–S73 (1999). https://doi.org/10.1007/s003399900296

    Article  ADS  Google Scholar 

  16. L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281–1298 (2000). https://doi.org/10.1063/1.373816

    Article  ADS  Google Scholar 

  17. Y.J. Moon, H. Kang, K. Kang, S.J. Moon, J. Young hwang, Effect of thickness on surface morphology of silver nanoparticle layer during furnace sintering. J. Electron. Mater. 44, 1192–1199 (2015). https://doi.org/10.1007/s11664-015-3639-2

    Article  ADS  Google Scholar 

  18. I.S. Lee, K. Ryu, K.H. Park, Y.J. Moon, J.Y. Hwang, S.J. Moon, Temperature effect on physical properties and surface morphology of printed silver ink during continuous laser scanning sintering. Int. J. Heat Mass Transf. 108, 1960–1968 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.095

    Article  Google Scholar 

  19. J.H. Choi, K. Ryu, K. Park, S.J. Moon, Thermal conductivity estimation of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Int. J. Heat Mass Transf. 85, 904–909 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.056

    Article  Google Scholar 

  20. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196–198 (1982). https://doi.org/10.1364/ol.7.000196

    Article  ADS  Google Scholar 

  21. A. Bogaerts, Z. Chen, Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation. Spectrochim Acta Part B At. Spectrosc. 60, 1280–1307 (2005). https://doi.org/10.1016/j.sab.2005.06.009

    Article  ADS  Google Scholar 

  22. Y. Zhang, D. Zhang, J. Wu, Z. He, X. Deng, A thermal model for nanosecond pulsed laser ablation of aluminum. AIP Adv. 7, 075010 (2017). https://doi.org/10.1063/1.4995972

    Article  ADS  Google Scholar 

  23. A. Hussain, H.-L. Lee, Y.-J. Moon, J.Y. Hwang, S.-J. Moon, Effect of pulse overlapping on temperature field and physical characteristics in pulsed laser sintering of inkjet-printed silver nanoparticles. Int. J. Heat Mass Transf. 202, 123678 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123678

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Research Foundation of Korea (NRF), titled “Development of Coal Analyzing System Using Laser-induced Breakdown Spectroscopy for Clean Coal Power Plant” (No. NRF-2016R1D1A1B03935556).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SJM, JYH, and H-LL. Methodology: Y-JM, and H-LL; Formal analysis and investigation: SJM, JYH, and H-LL; Writing—original draft preparation: H-LL; Writing—review and editing: SJM; Funding acquisition: JYH and SJM; Resources: JYH; Supervision: SJM and JYH.

Corresponding author

Correspondence to Seung Jae Moon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that may have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HL., Hussain, A., Moon, YJ. et al. Influence of pre-sintering on the nanosecond pulsed laser ablation patterns of spin-coated silver nanoparticles. Appl. Phys. A 129, 705 (2023). https://doi.org/10.1007/s00339-023-06964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06964-9

Keywords

Navigation