Skip to main content

Enhancing signal-to-noise ratio of clinical 1.5T MRI using metasurface-inspired flexible wraps

Abstract

Magnetic resonance imaging (MRI) is one of the prominent diagnostic tools which uses non-invasive modalities for clinical imaging of human body parts. Signal-to-noise ratio (SNR), the key figure of merit that defines the quality of any MRI scan, can be boosted by increasing either the applied static magnetic field \(({B}_{0})\) from the scanner’s electromagnet or the oscillating radiofrequency (RF) magnetic field (\({B}_{1}\)) from the transceiver coil. However, higher RF field intensity inside scanners could bring adverse effects like inhomogeneity of transmitted RF magnetic field, increase in tissue heating (characterized as specific absorption rate (SAR): \(3.2\)W/kg—safety limit) due to stronger RF electric field hotspots and, thus, raising potential safety concerns for patients. Metasurfaces are artificial structures that can enhance magnetic fields in their near-field region, thus find applications in boosting the SNR of MRI without stepping up \({B}_{0}\). However, most of the reported metasurfaces for \(1.5\)T MRI are bulky and cannot conform to human body parts with different anatomies. Here, we propose a metasurface-inspired flexible structure that can be wrapped on patients’ body parts with different curvatures for boosting the SNR of \(1.5\)T MRI scans. An equivalent circuit model, formulated for elucidating electromagnetic behavior of the proposed metasurface-inspired wrap, has validated the reflection characteristics obtained from full-wave simulations. The proposed design is investigated in flattened and different wrapped conditions on the phantoms/bio-models mimicking human properties for estimating the enhancement in received magnetic field (\({B}_{1}^{-}\)) and SNR at \(1.5\)T MRI. A boost of \(\sim8\) times in \({B}_{1}^{-}\) as well as SNR enhancement factor is observed on the surface of metasurface-wrapped bio-model under excitation of transceiver birdcage coil while maintaining SAR well under the safety limit. Numerical analyses for the conformed shapes of metasurface show that the proposed wrap could be used as a “wearable add-on” inside \(1.5\)T MRI transceiver arrays for significant SNR enhancement in scans of different body parts, such as head, legs, etc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The analyzed data included and described in the manuscript will be available to researchers and scientists from the corresponding author upon reasonable request.

References

  1. R.W. Brown, Y.C.N. Cheng, E.M. Haacke, M.R. Thompson, R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, New York, 2014)

    Google Scholar 

  2. Z.P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging (SPIE Optical Engineering Press, Bellingham, 2000), pp.1–7

    Google Scholar 

  3. I. Young, Nuclear magnetic resonance imaging. Electron. Power 30(3), 205–210 (1984)

    Google Scholar 

  4. V. Kuperman, Magnetic Resonance Imaging: Physical Principles and Applications (Elsevier, Amsterdam, 2000)

    Google Scholar 

  5. H. Wada, M. Sekino, H. Ohsaki, T. Hisatsune, H. Ikehira, T. Kiyoshi, Prospect of high-field MRI. IEEE Trans. Appl. Supercond. 20(3), 115–122 (2010)

    ADS  Google Scholar 

  6. T. Nakada, Clinical application of high and ultra high-field MRI. Brain Dev. 29(6), 325–335 (2007)

    Google Scholar 

  7. K. Uğurbil, G. Adriany, P. Andersen, W. Chen, M. Garwood, R. Gruetter, P.G. Henry, S.G. Kim, H. Lieu, I. Tkac, T. Vaughan, Ultrahigh field magnetic resonance imaging and spectroscopy. Magn. Reson. Imaging 21(10), 1263–1281 (2003)

    Google Scholar 

  8. M.E. Ladd, High-field-strength magnetic resonance: potential and limits. Top. Magn. Reson. Imaging 18(2), 139–152 (2007)

    Google Scholar 

  9. S. Geethanath, J.T. Vaughan Jr., Accessible magnetic resonance imaging: a review. J. Magn. Reson. Imaging 49(7), 65–77 (2019)

    Google Scholar 

  10. M.S. Khennouche, F. Gadot, B. Belier, A. de Lustrac, Different configurations of metamaterials coupled with an RF coil for MRI applications. Appl. Phys. A 109, 1059–1063 (2012)

    ADS  Google Scholar 

  11. M.E. Ladd, P. Bachert, M. Meyerspeer, E. Moser, A.M. Nagel, D.G. Norris, S. Schmitter, O. Speck, S. Straub, M. Zaiss, Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018)

    Google Scholar 

  12. J. Hamilton, D. Franson, N. Seiberlich, Recent advances in parallel imaging for MRI. Prog. Nucl. Magn. Reson. Spectrosc. 101, 71–95 (2017)

    Google Scholar 

  13. H. Guo, J. Zhou, P. Liu, H. Chen, Phase-constrained reconstruction method with compressed sensing for multi-parametric quantitative magnetic resonance imaging. Biomed. Signal. Process. Control 80, 104383 (2023)

    Google Scholar 

  14. J. van Gemert, W. Brink, A. Webb, R. Remis, High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magn. Reson. Med. 81(5), 3370–3378 (2019)

    Google Scholar 

  15. A.V. Shchelokova, A.P. Slobozhanyuk, P. de Bruin, I. Zivkovic, E. Kallos, P.A. Belov, A. Webb, Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T. J. Magn. Reson. 286, 78–81 (2018)

    ADS  Google Scholar 

  16. J. Gupta, P. Das, A.K. Chowdhary, R. Bhattacharjee, D. Sikdar, Thin-wire array based resonator for targeted clinical 1.5 T magnetic resonance imaging. In 2022 IEEE Photon Conference (IPC) (2022), pp. 1–2

  17. W.J. Padilla, R.D. Averitt, Imaging with metamaterials. Nat. Rev. Phys. 4(2), 85–100 (2022)

    Google Scholar 

  18. R. Schmidt, A. Webb, Metamaterial combining electric-and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging. ACS Appl. Mater. Interfaces 9(40), 34618–34624 (2017)

    Google Scholar 

  19. A.M. Maunder, C. Barker, N. De Zanche, A.K. Iyer, Metamaterial liner for MRI excitation—part 1: theory, modeling and design. IEEE Access 10, 41664–41677 (2022)

    Google Scholar 

  20. J.K. Plourde, C.L. Ren, Application of dielectric resonators in microwave components. IEEE Trans. Microw. Theory Tech. 29(8), 754–770 (1981)

    ADS  Google Scholar 

  21. A.G. Webb, Dielectric materials in magnetic resonance. Concepts Magn. Reson. A 38(4), 148–184 (2011)

    Google Scholar 

  22. D. Hernandez, K.N. Kim, A review on the RF coil designs and trends for ultra high field magnetic resonance imaging. Invesig. Magn. Reson. Imaging 24(3), 95–122 (2020)

    Google Scholar 

  23. A. Kordzadeh, N. De Zanche, Control of mutual coupling in high-field MRI transmit arrays in the presence of high-permittivity liner. IEEE Trans. Microw. Theor. Tech. 65(9), 3485–3491 (2017)

    ADS  Google Scholar 

  24. A.P. Slobozhanyuk, A.N. Poddubny, A.J.E. Raaijmakers, C.A.T. Van Den Berg, A.V. Kozachenko, I.A. Dubrovina, I.V. Melchakova, Y.S. Kivshar, P.A. Belov, Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28, 1832–1838 (2016)

    Google Scholar 

  25. C. Jouvaud, R. Abdeddaim, B. Larrat, J. De Rosny, Volume coil based on hybridized resonators for magnetic resonance imaging. Appl. Phys. Lett. 108(2), 023503 (2016)

    ADS  Google Scholar 

  26. A. Li, S. Singh, D. Sievenpiper, Metasurfaces and their applications. Nanophotonics 7(6), 989–1011 (2018)

    Google Scholar 

  27. A.K. Chowdhary, T. Bhowmik, D. Sikdar, Polarization-and angle-insensitive ultrabroadband perfect metamaterial absorber for thermophotovoltaics. J. Opt. Soc. Am. B 38(2), 327–335 (2021)

    ADS  Google Scholar 

  28. Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, Z. Zhang, Asymmetric transmission of a planar metamaterial induced by symmetry breaking. J. Phys. Condens. Matter 30(11), 114001 (2018)

    ADS  Google Scholar 

  29. T. Bhowmik, D. Sikdar, Electrically tunable metasurface for dual-band spatial light modulation using the epsilon-near-zero effect. Opt. Lett. 47(19), 4993–4996 (2022)

    ADS  Google Scholar 

  30. C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, X. Xu, Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials. J. Phys. Cond. Matter 31(8), 085301 (2019)

    ADS  Google Scholar 

  31. W. Cai, V.M. Shalaev, Optical Metamaterials, vol. 10 (Springer, New York, 2010), p.6011

    Google Scholar 

  32. A.L.A.K. Ranaweera, T.S. Pham, H.N. Bui, V. Ngo, J.W. Lee, An active metasurface for field-localizing wireless power transfer using dynamically reconfigurable cavities. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  33. G. Duan, X. Zhao, S.W. Anderson, X. Zhang, Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials. Commun. Phys. 2(1), 1–8 (2019)

    Google Scholar 

  34. Z. Li, X. Tian, C.W. Qiu, J.S. Ho, Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4(6), 382–391 (2021)

    Google Scholar 

  35. E. Stoja, S. Konstandin, D. Philipp, R.N. Wilke, D. Betancourt, T. Bertuch, J. Jenne, R. Umathum, M. Günther, Improving magnetic resonance imaging with smart and thin metasurfaces. Sci. Rep. 11(1), 1–12 (2021)

    ADS  Google Scholar 

  36. A.P. Slobozhanyuk, A.V. Shchelokova, A.V. Kozachenko, I.V. Melchakova, A.J. Raaijmakers, C.A. van den Berg, P.A. Belov, A.G. Webb, Visualization of metasurface eigenmodes with magnetic resonance imaging. Phys. Rev. Appl. 16(2), L021002 (2021)

    ADS  Google Scholar 

  37. I. Issa, K.L. Ford, M. Rao, J.M. Wild, A magnetic resonance imaging surface coil transceiver employing a metasurface for 1.5 T applications. IEEE Trans. Med. Imaging 39(4), 1085–1093 (2019)

    Google Scholar 

  38. R. Schmidt, A. Slobozhanyuk, P. Belov, A. Webb, Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci. Rep. 7(1), 1–7 (2017)

    Google Scholar 

  39. S.L. Sokol, Z.A. Colwell, S.K. Kandala, M.F. Imani, S.M. Sohn, Flexible metamaterial wrap for improved head imaging at 3 T MRI With low-cost and easy fabrication method. IEEE Antennas Wirel. Propag. Lett. 21(10), 2075–2079 (2022)

    ADS  Google Scholar 

  40. E.A. Brui, A.V. Shchelokova, M. Zubkov, I.V. Melchakova, S.B. Glybovski, A.P. Slobozhanyuk, Adjustable subwavelength metasurface-inspired resonator for magnetic resonance imaging. Phys. Stat. Soli. (A) 215(5), 1700788 (2018)

    ADS  Google Scholar 

  41. E.I. Kretov, A.V. Shchelokova, A.P. Slobozhanyuk, Control of the magnetic near-field pattern inside MRI machine with tunable metasurface. Appl. Phys. Lett. 115(6), 061604 (2019)

    ADS  Google Scholar 

  42. P. Das, J. Gupta, D. Sikdar, R. Bhattacharjee, A thin metallo-dielectric stacked metamaterial as “add-on” for magnetic field enhancement in clinical MRI. J. Appl. Phys. 132(11), 114901 (2022)

    ADS  Google Scholar 

  43. A.V. Shchelokova, A.P. Slobozhanyuk, I.V. Melchakova, S.B. Glybovski, A.G. Webb, Y.S. Kivshar, P.A. Belov, Locally enhanced image quality with tunable hybrid metasurfaces. Phys. Rev. Appl. 9(1), 014020 (2018)

    ADS  Google Scholar 

  44. J. Wang, A. Reykowski, J. Dickas, Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils magnetic resonance imaging. IEEE Trans Biomed. Eng. 42(9), 908–917 (1995)

    Google Scholar 

  45. J.M. Griffith, G.W. Pan, Time harmonic fields produced by circular current loops. IEEE Trans. Magn. 47(8), 2029–2033 (2011)

    ADS  Google Scholar 

  46. T.H. Chung, H.D. Kang, J.G. Yook, Broadband equivalent circuit modelling of spiral resonators for printed circuit board applications. IET Circuits Dev. Syst. 7(3), 169–176 (2013)

    Google Scholar 

  47. P. Das, K. Mandal, Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna. IET Microw. Antennas Propag. 13, 269–277 (2019)

    Google Scholar 

  48. M.V. Vaidya, C.M. Collins, D.K. Sodickson, R. Brown, G.C. Wiggins, R. Lattanzi, Dependence of and field patterns of surface coils on the electrical properties of the sample and the MR operating frequency. Concept Magn. Reason. Part B Magn. Reason. Eng. 46(1), 25–40 (2016)

    Google Scholar 

  49. H. Wang, H.K. Huang, Y.S. Chen, Y. Zhao, On-demand field shaping for enhanced magnetic resonance imaging using an ultrathin reconfigurable metasurface. View 2(3), 20200099 (2021)

    Google Scholar 

  50. E. Motovilova, S.Y. Huang, Hilbert curve-based metasurface to enhance sensitivity of radio frequency coils for 7-T MRI. IEEE Trans. Microw. Theory Tech. 67(2), 615–625 (2018)

    ADS  Google Scholar 

  51. T.J. Vaughan, J.R. Griffiths, RF Coils for MRI (Wiley, New York, 2012)

    Google Scholar 

  52. C.A. Barrera, M.L. Francavilla, S.D. Serai, J.C. Edgar, C. Jaimes, M.S. Gee, T.P. Roberts, H.J. Otero, N.S. Adzick, T. Victoria, Specific absorption rate and specific energy dose: comparison of 1.5-T versus 3.0-T fetal. MRI Radiol. 295(3), 664–674 (2020)

    Google Scholar 

  53. T.S.V. Gomez, M. Dubois, K. Rustomji, E. Georget, T. Antonakakis, A. Vignaud, S. Rapacchi, O.M. Girard, F. Kober, S. Enoch, R. Abdeddaim, Hilbert fractal inspired dipoles for passive RF shimming in ultra-high field MRI. Photon. Nano. Fundam. Appl. 48, 100988 (2022)

    Google Scholar 

Download references

Funding

This work is supported by the Prime Minister’s Research Fellowship (PMRF) provided by the Ministry of Education (MoE), Government of India, and iHUB DivyaSampark Technology Innovation Hub (TIH), IIT Roorkee (Project TIH/RP/\(05\)).

Author information

Authors and Affiliations

Authors

Contributions

JG: conceptualization (lead); theoretical analysis (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (lead); resources (lead); writing—original draft (lead). PD: methodology (equal); theoretical analysis (equal). RB: project administration (equal); supervision (equal); writing—review and editing (equal). DS: funding acquisition (lead); project administration (lead); supervision (lead); writing—review and editing (lead).

Corresponding author

Correspondence to Jegyasu Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J., Das, P., Bhattacharjee, R. et al. Enhancing signal-to-noise ratio of clinical 1.5T MRI using metasurface-inspired flexible wraps. Appl. Phys. A 129, 725 (2023). https://doi.org/10.1007/s00339-023-06962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06962-x

Keywords