Skip to main content
Log in

Physical-mechanism-based constitutive modeling of hot compression behavior of NbTiVZr0.5 medium-entropy alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High- and medium-entropy alloys are considered as new and promising material candidates for extreme service conditions. Due to the high strength and significant work-hardening under cold-forming conditions, the hot bulk-forming process is often used for raw billets of high-entropy alloys, which requires a thorough understanding of the hot flow behavior of new material and finite-element simulations of processing. In this paper, first, the hot compression tests of NbTiVZr0.5 medium-entropy alloy were carried out, and the flow stress–strain curves of NbTiVZr0.5 alloy at different temperatures 800–1000 °C and strain rates 0.001–0.1 /s were obtained, which enables the feasibility of hot bulk-forming such a new material to be evaluated. EBSD grain morphology and grain size under typical conditions were characterized to provide quantitative microscopic variables. Using the determined macro- and micro-values, a physical-mechanism-based constitutive model of NbTiVZr0.5 medium-entropy alloy was established considering the dynamic recrystallization and adiabatic heating effects, particularly in hot bulk-forming. The hot flow behavior under different deformation conditions was accurately predicted with good agreement with experimentation. The calculated R-value of 0.93 further demonstrates the accuracy of the predicted results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All revent data are within the paper.

References

  1. Z. Huda, P. Edi, Mater. Des. 46, 552 (2013)

    Article  Google Scholar 

  2. A. Thakur, S. Gangopadhyay, Int. J. Mach. Tools Manuf. 100, 25 (2016)

    Article  Google Scholar 

  3. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, J. Mater. Res. 33, 3092 (2018)

    Article  ADS  Google Scholar 

  4. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)

    Article  ADS  Google Scholar 

  5. S. Gorsse, D.B. Miracle, O.N. Senkov, Acta Mater. 135, 177 (2017)

    Article  ADS  Google Scholar 

  6. O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, H.L. Fraser, Mater. Des. 139, 498 (2018)

    Article  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758 (2010)

    Article  Google Scholar 

  8. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011)

    Article  Google Scholar 

  9. E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, L. Vitos, Int. J. Refract. Met. Hard Mater. 47, 131 (2014)

    Article  Google Scholar 

  10. Z. Savaedi, R. Motallebi, H. Mirzadeh, J. Alloys Compd. 903, 21 (2022)

    Article  Google Scholar 

  11. O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mater. Sci. Eng. A 565, 51 (2013)

    Article  Google Scholar 

  12. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science (80-. ) 345, 1153 (2014)

    Article  ADS  Google Scholar 

  13. O.N. Senkov, S. Rao, K.J. Chaput, C. Woodward, Acta Mater. 151, 201 (2018)

    Article  ADS  Google Scholar 

  14. Y. Jia, L. Zhang, P. Li, X. Ma, L. Xu, S. Wu, Y. Jia, G. Wang, Front. Mater. 7, 172 (2020)

    Article  ADS  Google Scholar 

  15. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 652, 266 (2015)

    Article  Google Scholar 

  16. N.D. Stepanov, N.Y. Yurchenko, A.O. Gridneva, S.V. Zherebtsov, Y.V. Ivanisenko, G.A. Salishchev, Mater. Sci. Eng. A 716, 308 (2018)

    Article  Google Scholar 

  17. O.N. Senkov, S.L. Semiatin, J. Alloys Compd. 649, 1110 (2015)

    Article  Google Scholar 

  18. W. Wu, S. Ni, Y. Liu, M. Song, J. Mater. Res. 31, 3815 (2016)

    Article  ADS  Google Scholar 

  19. N.Y. Yurchenko, E.S. Panina, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, N.D. Stepanov, Mater. Charact. 158, 109980 (2019)

    Article  Google Scholar 

  20. J. Han, B. Su, A. Zhang, J. Meng, Y. Wu, Mater. Lett. 284, 128979 (2021)

    Article  Google Scholar 

  21. R. Bobbili, V. Madhu, Mater. Lett. 218, 103 (2018)

    Article  Google Scholar 

  22. M. Patnamsetty, A. Saastamoinen, M.C. Somani, P. Peura, Sci. Technol. Adv. Mater. 21, 43 (2020)

    Article  Google Scholar 

  23. C. Brown, T. McCarthy, K. Chadha, S. Rodrigues, C. Aranas Jr., G.C. Saha, Mater. Sci. Eng. A 826, 141940 (2021)

    Article  Google Scholar 

  24. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81, 428 (2014)

    Article  Google Scholar 

  25. J. Lin. Fundamentals of materials modelling for metals processing technologies: theories and applications, Chapter 3: Unified Constitutive Modelling Techniques (Imperial College Press, London, 2015), pp. 92–122

  26. M. Zehetbauer, V. Seumer, Acta Metall. Mater. 41, 577 (1993)

    Article  Google Scholar 

  27. A.S. Argon, P. Haasen, Acta Metall. Mater. 41, 3289 (1993)

    Article  Google Scholar 

  28. A. Mecif, B. Bacroix, P. Franciosi, Acta Mater. 45, 371 (1997)

    Article  ADS  Google Scholar 

  29. D. Kuhlmann-Wilsdorf, N. Hansen, Metall. Trans. A 20, 2393 (1989)

    Article  Google Scholar 

  30. Q. Bai, J. Lin, T.A. Dean, D.S. Balint, T. Gao, Z. Zhang, Mater. Sci. Eng. A 559, 352 (2013)

    Article  Google Scholar 

  31. J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, H.S. Kim, Mater. Sci. Eng. A 719, 155 (2018)

    Article  Google Scholar 

  32. J. Lin, M. Mohamed, D. Balint, T.A. Dean, Int. J. Damage Mech. 23, 684 (2014)

    Article  Google Scholar 

  33. N. Li, C. Sun, N. Guo, M. Mohamed, J. Lin, T. Matsumoto, C. Liu, J. Mater. Process. Technol. 228 (2016)

  34. R. R. Eleti, T. Bhattacharjee, L.J Zhao, P. P. Bhattacharjee. Mater. Chem. Phys. 210, 176(2018).

  35. H.T. Jeong, H.K. Park, K. Park, T.W. Na, W.J. Kim, Mater. Sci. Eng. A. 756, 528 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support for this work provided by the Fundamental Research Funds for the Central Universities under the Grant Agreement DUT20RC(3)012.

Author information

Authors and Affiliations

Authors

Contributions

The study in this paper was performed as a collaboration between all the authors. YF, SQ, and KZ designed the program of the experiment and discussed the relevant details. KZ, PL, and SY designed the project and research theme and provided scientific guides. YF and JL performed the hot compression tests and microstructure observations. YF, SQ, JL, and KZ established suitable material constitutive model. YF, SQ, and KZ wrote the manuscript. All the authors analyzed the correction results. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kailun Zheng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Qu, S., Liang, J. et al. Physical-mechanism-based constitutive modeling of hot compression behavior of NbTiVZr0.5 medium-entropy alloy. Appl. Phys. A 129, 701 (2023). https://doi.org/10.1007/s00339-023-06960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06960-z

Keywords

Navigation