Skip to main content

Advertisement

Log in

Pressure effects on the structure and diffusion of liquid Zr50Cu25Al10Pd15 during rapid solidification: a molecular dynamics simulation study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The local structure of Zr50Cu25Al10Pd15 metallic liquid and glass under various pressures from 0 to 50 GPa during rapid solidification is evaluated using molecular dynamics simulations. The relation between structural change and the pressure is discussed in terms of distribution functions, local coordination, chemical short range, common neighbours and diffusion of atoms in the system. The results are in good agreement with other theoretical and experimental data given for the unloaded and pressurised system. The applied pressure up to 50 GPa has compressed the free volume in the system under consideration and shortened the neighbour distances. Although the clusters of ideal icosahedra and bcc order weaken and the fcc and hcp order develop with pressure, the system maintains the short-range arrangement of the icosahedra at all pressures studied here. It is seen that Zr50Cu25Al10Pd15 glass is characterised by Zr-centred Frank–Kasper polyhedra and Cu, Al- and Pd-centred ideal icosahedral clusters. It becomes clear that Pd and Zr are the atoms whose local arrangement is most affected by pressure due to change in their local coordination, chemical preference and diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw and processed data required to reproduce these findings are available to download from: https://data.mendeley.com/datasets/scfpy6nnwm/draft?a=23e79a85-efd9-4a93-89cb-3549aca6ebc6

References

  1. C. Fan, A. Inoue, Improvement of mechanical properties by precipitation of nanoscale compound particles in Zr–Cu–Pd–Al amorphous alloys. Mater. Trans. JIM. 38, 1040–1046 (1997). https://doi.org/10.2320/matertrans1989.38.1040

    Article  Google Scholar 

  2. C. Fan, A. Inoue, Influence of liquid temperature on the crystallization behavior in Zr–Al–Cu–Pd amorphous alloy. Mater. Trans. JIM. 40, 1178–1180 (1999). https://doi.org/10.2320/matertrans1989.40.1178

    Article  Google Scholar 

  3. C. Fan, M. Imafuku, H. Kurokawa, A. Inoue, V. Haas, Investigation of short-range order in nanocrystal-forming Zr60Cu20Pd10Al10 metallic glass and the mechanism of nanocrystal formation. Appl. Phys. Lett. 79, 1792–1794 (2001). https://doi.org/10.1063/1.1404128

    Article  ADS  Google Scholar 

  4. C. Fan, M. Imafuku, H. Kurokawa, A. Inoue, Influence of the liquid temperatures on nanocrystal-forming Zr-based metallic glasses. Scr. Mater. 44, 1993–1997 (2001). https://doi.org/10.1016/S1359-6462(01)00821-1

    Article  Google Scholar 

  5. M.W. Chen, A. Inoue, T. Sakurai, D.H. Ping, K. Hono, Impurity oxygen redistribution in a nanocrystallized Zr65Cr15Al10Pd10 metallic glass. Appl. Phys. Lett. 74, 812–814 (1999). https://doi.org/10.1063/1.123376

    Article  ADS  Google Scholar 

  6. M.W. Chen, A. Inoue, C. Fan, A. Sakai, T. Sakurai, Fracture behavior of a nanocrystallized Zr65Cu15Al10Pd10 metallic glass. Appl. Phys. Lett. 74, 2131–2133 (1999). https://doi.org/10.1063/1.123779

    Article  ADS  Google Scholar 

  7. P.N. Zhang, J.F. Li, Y. Hu, Y.H. Zhou, Structure evolution of bulk Zr60Cu20Pd10Al10 amorphous alloy during rolling deformation. J. Mater. Sci. 43, 7179–7183 (2008). https://doi.org/10.1007/s10853-008-3019-x

    Article  ADS  Google Scholar 

  8. W. Dmowski, S. Gierlotka, Z. Wang, Y. Yokoyama, B. Palosz, T. Egami, Pressure induced liquid-to-liquid transition in Zr-based supercooled melts and pressure quenched glasses. Sci. Rep. 7, 6564 (2017). https://doi.org/10.1038/s41598-017-06890-w

    Article  ADS  Google Scholar 

  9. W. Dmowski, G.H. Yoo, S. Gierlotka, H. Wang, Y. Yokoyama, E.S. Park, S. Stelmakh, T. Egami, High pressure quenched glasses: unique structures and properties. Sci. Rep. 10, 9497 (2020). https://doi.org/10.1038/s41598-020-66418-7

    Article  ADS  Google Scholar 

  10. W. Smith, T.R. Forester, DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14, 136–141 (1996). https://doi.org/10.1016/S0263-7855(96)00043-4

    Article  Google Scholar 

  11. M. Celtek, An in-depth investigation of the microstructural evolution and dynamic properties of Zr77Rh23 metallic liquids and glasses: a molecular dynamics simulation study. J. Appl. Phys. 132, 035902 (2022). https://doi.org/10.1063/5.0095398

    Article  ADS  Google Scholar 

  12. F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys. Phys. Rev. B. 48, 22–33 (1993). https://doi.org/10.1103/PhysRevB.48.22

    Article  ADS  Google Scholar 

  13. M. Celtek, S. Sengul, The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations. Philos. Mag. 98, 783–802 (2018). https://doi.org/10.1080/14786435.2018.1425012

    Article  ADS  Google Scholar 

  14. M. Celtek, S. Sengul, U. Domekeli, V. Guder, Dynamical and structural properties of metallic liquid and glass Zr48Cu36Ag8Al8 alloy studied by molecular dynamics simulation. J. Non. Cryst. Solids. 566, 120890 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120890

    Article  Google Scholar 

  15. Z. Zhang, Elastic properties of bulk-metallic glasses studied by resonant ultrasound spectroscopy, tennessee research and creative exchange-TRACE, 2008.

  16. H.B. Lou, L.H. Xiong, A.S. Ahmad, A.G. Li, K. Yang, K. Glazyrin, H.P. Liermann, H. Franz, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang, Atomic structure of Pd81Si19 glassy alloy under high pressure. Acta Mater. 81, 420–427 (2014). https://doi.org/10.1016/j.actamat.2014.08.051

    Article  Google Scholar 

  17. A. Atila, M. Kbirou, S. Ouaskit, A. Hasnaoui, On the presence of nanoscale heterogeneity in Al70Ni15Co15 metallic glass under pressure. J. Non. Cryst. Solids. 550, 120381 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120381

    Article  Google Scholar 

  18. H.R. Wendt, F.F. Abraham, Empirical criterion for the glass transition region based on monte Carlo simulations. Phys. Rev. Lett. 41, 1244–1246 (1978). https://doi.org/10.1103/PhysRevLett.41.1244

    Article  ADS  Google Scholar 

  19. V. Guder, S. Sengul, M. Celtek, U. Domekeli, Pressure dependent evolution of microstructures in Pd80Si20 bulk metallic glass. J. Non. Cryst. Solids. 576, 121290 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121290

    Article  Google Scholar 

  20. M. Celtek, S. Sengul, U. Domekeli, V. Guder, Molecular dynamics simulations of glass formation, structural evolution and diffusivity of the Pd-Si alloys during the rapid solidification process. J. Mol. Liq. 372, 121163 (2023). https://doi.org/10.1016/j.molliq.2022.121163

    Article  Google Scholar 

  21. K. Zhang, On the concept of static structure factor, ArXiv. https://sites.google. com/site/kaizhangstatmech/code/structurefactorsq, 2016., (n.d.).

  22. L. Li, L. Wang, R. Li, H. Zhao, D. Qu, K.W. Chapman, P.J. Chupas, H. Liu, Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure. Phys. Rev. B. 94, 184201 (2016). https://doi.org/10.1103/PhysRevB.94.184201

    Article  ADS  Google Scholar 

  23. M. Celtek, Atomic structure of Cu60Ti20Zr20 metallic glass under high pressures. Intermetallics 143, 107493 (2022). https://doi.org/10.1016/j.intermet.2022.107493

    Article  Google Scholar 

  24. W.Y. Ching, L.W. Song, S.S. Jaswal, Calculation of electron states in CuxZr1−x glasses by the orthogonalized linear combination of atomic orbitals method. Phys. Rev. B. 30, 544–552 (1984). https://doi.org/10.1103/PhysRevB.30.544

    Article  ADS  Google Scholar 

  25. T. Takagi, T. Ohkubo, Y. Hirotsu, B.S. Murty, K. Hono, D. Shindo, Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79, 485–487 (2001). https://doi.org/10.1063/1.1383055

    Article  ADS  Google Scholar 

  26. M. Celtek, S. Sengul, U. Domekeli, Glass formation and structural properties of Zr50Cu50-xAlx bulk metallic glasses investigated by molecular dynamics simulations. Intermetallics 84, 62–73 (2017). https://doi.org/10.1016/j.intermet.2017.01.001

    Article  Google Scholar 

  27. M. Celtek, U. Domekeli, S. Sengul, C. Canan, Effects of Ag or Al addition to CuZr-based metallic alloys on glass formation and structural evolution: A molecular dynamics simulation study. Intermetallics 128, 107023 (2021). https://doi.org/10.1016/j.intermet.2020.107023

    Article  Google Scholar 

  28. K. Saksl, H. Franz, P. Jóvári, K. Klementiev, E. Welter, A. Ehnes, J. Saida, A. Inoue, J.Z. Jiang, Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Appl. Phys. Lett. 83, 3924–3926 (2003). https://doi.org/10.1063/1.1626266

    Article  ADS  Google Scholar 

  29. J. Saida, T. Sanada, S. Sato, M. Imafuku, C. Li, A. Inoue, Nano quasicrystal formation and local atomic structure in Zr–Pd and Zr–Pt binary metallic glasses. Zeitschrift Für Krist. 223, 726–730 (2008). https://doi.org/10.1524/zkri.2008.1041

    Article  ADS  Google Scholar 

  30. S. Sengul, M. Celtek, U. Domekeli, The structural evolution and abnormal bonding ways of the Zr80Pt20 metallic liquid during rapid solidification under high pressure. Comput. Mater. Sci. 172, 109327 (2020). https://doi.org/10.1016/j.commatsci.2019.109327

    Article  Google Scholar 

  31. J.M. Cowley, X-ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 21, 24 (1950). https://doi.org/10.1063/1.1699415

    Article  ADS  Google Scholar 

  32. L. Li, L. Hu, L. Zhang, Y. Huang, K. Song, H. Shen, S. Jiang, Z. Wang, X. Zhao, J. Sun, Liquid-liquid transition and inherited signatures in Zr-Cu-Ni-Al metallic glasses. J. Non. Cryst. Solids. 600, 122029 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.122029

    Article  Google Scholar 

  33. J.-Q. Hu, M. Xie, Y. Pan, Y.-C. Yang, M.-M. Liu, J.-M. Zhang, The electronic, elastic and structural properties of Pd–Zr intermetallic. Comput. Mater. Sci. 51, 1–6 (2012). https://doi.org/10.1016/j.commatsci.2011.07.049

    Article  Google Scholar 

  34. L.A. Bendersky, J.K. Stalick, R. Portier, R.M. Waterstrat, Crystallographic structures and phase transformations in ZrPd. J. Alloys Compd. 236, 19–25 (1996). https://doi.org/10.1016/0925-8388(96)80046-6

    Article  Google Scholar 

  35. T. Matković, K. Schubert, J. Less Common Met. 55, 45–52 (1977). https://doi.org/10.1016/0022-5088(77)90258-2

    Article  Google Scholar 

  36. J.R. Walensky, C.M. Fafard, C. Guo, C.M. Brammell, B.M. Foxman, M.B. Hall, O.V. Ozerov, Understanding Pd–Pd bond length variation in (PNP)Pd–Pd(PNP) dimers. Inorg. Chem. 52, 2317–2322 (2013). https://doi.org/10.1021/ic301629m

    Article  Google Scholar 

  37. J. Ding, G. Pan, L. Du, J. Lu, W. Wang, X. Wei, J. Li, Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3. Appl. Energy. 227, 555–563 (2018). https://doi.org/10.1016/J.APENERGY.2017.07.019

    Article  Google Scholar 

  38. P. Ganesh, M. Widom, Signature of nearly icosahedral structures in liquid and supercooled liquid copper. Phys. Rev. B Condens. Matter Mater. Phys. (2006). https://doi.org/10.1103/PhysRevB.74.134205

    Article  Google Scholar 

  39. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Clarendon Press, Oxford, 1991)

    MATH  Google Scholar 

  40. J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987). https://doi.org/10.1021/j100303a014

    Article  Google Scholar 

  41. J.L. Finney, Modelling the structures of amorphous metals and alloys. Nature 266, 309–314 (1977). https://doi.org/10.1038/266309a0

    Article  ADS  Google Scholar 

  42. F.A. Celik, Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Phys. Lett. A. 378, 2151–2156 (2014). https://doi.org/10.1016/j.physleta.2014.05.019

    Article  ADS  Google Scholar 

  43. M. Celtek, S. Sengul, Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: Molecular dynamics simulations. J. Non. Cryst. Solids. 498, 32–41 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.06.003

    Article  ADS  Google Scholar 

  44. J.P.K. Doye, D.J. Wales, The structure and stability of atomic liquids: from clusters to bulk. Science 271, 484–487 (1996). https://doi.org/10.1126/science.271.5248.484

    Article  ADS  Google Scholar 

  45. P. Zhang, J.J. Maldonis, M.F. Besser, M.J. Kramer, P.M. Voyles, Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses. Acta Mater. 109, 103–114 (2016). https://doi.org/10.1016/j.actamat.2016.02.006

    Article  ADS  Google Scholar 

  46. M. Kbirou, S. Trady, A. Hasnaoui, M. Mazroui, Cooling rate dependence and local structure in aluminum monatomic metallic glass. Philos. Mag. (2017). https://doi.org/10.1080/14786435.2017.1352107

    Article  Google Scholar 

  47. R.E. Watson, L.H. Bennett, Alpha manganese and the frank kasper phases. Scr. Metall. 19, 535–538 (1985). https://doi.org/10.1016/0036-9748(85)90129-2

    Article  Google Scholar 

  48. R.E. Watson, M. Weinert, Transition-metals and their alloys, in: 2001: pp. 1–112. https://doi.org/10.1016/S0081-1947(01)80018-7.

  49. L. Xie, H. An, Q. Peng, Q. Qin, Y. Zhang, Sensitive five-fold local symmetry to kinetic energy of depositing atoms in Cu–Zr thin film growth. Materials (Basel). 11, 2548 (2018). https://doi.org/10.3390/ma11122548

    Article  ADS  Google Scholar 

  50. P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996). https://doi.org/10.1063/1.471721

    Article  ADS  Google Scholar 

  51. H. Zhang, H. Sun, Q. Li, L. Wang, Origin of local structures of U-Co melts: a first-principles study. Front. Mater. (2022). https://doi.org/10.3389/fmats.2021.821306

    Article  Google Scholar 

  52. H.W. Sheng, E. Ma, M.J. Kramer, Relating dynamic properties to atomic structure in metallic glasses. JOM. 64, 856–881 (2012). https://doi.org/10.1007/s11837-012-0360-y

    Article  Google Scholar 

  53. F. Yonezawa, S. Nosé, S. Sakamoto, Computer simulations of the glass transition. Zeitschrift Für Phys Chemie. 156, 77–90 (1988). https://doi.org/10.1524/zpch.1988.156.Part_1.077

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conceptualization, methodology and design, data collection, analysis, visualisation and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to V. Guder.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guder, V. Pressure effects on the structure and diffusion of liquid Zr50Cu25Al10Pd15 during rapid solidification: a molecular dynamics simulation study. Appl. Phys. A 129, 661 (2023). https://doi.org/10.1007/s00339-023-06940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06940-3

Keywords

Navigation