Skip to main content
Log in

Investigation of dielectric parameters and AC conductivity of ZnO: TiC nanocomposite powders

  • Invited Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, pure and (wt% 10, 20, and 30) titanium carbide (TiC)-reinforced zinc oxide (ZnO) nanoparticles were produced by sol–gel synthesis method. Sol–gel nanoparticle synthesis was carried out by dissolving the solvents in a magnetic stirrer at 90 °C for 4 h. The filtration, drying, pestle, and annealing processes of the  synthesized nanoparticles were carried out. The structural and morphological properties of the synthesized ZnO and TiC-added nanoparticles were investigated by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy-dispersive spectrum (EDX), and Fourier transform infrared spectroscopy (FT-IR) analyses. The dielectric properties of the produced nanoparticles were also investigated. As a result of the analysis, characteristic peaks of TiC and ZnO nanoparticles were found in XRD analysis. In the XRD analysis results, increases and shifts occurred in the characteristic peaks of TiC with the increase in the amount of TiC additive. As a result of FE-SEM analysis, it was observed that TiC nanoparticles grew in the ZnO structure with the increase of TiC contribution. It has been observed that TiC doping positively affects the dielectric properties of ZnO nanoparticles and their AC conductivity values, and the studies can be extended and used in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All the relevant experimental data have already been made part of the main manuscript. There are no extra data available in this regard.

References

  1. F.J. Heiligtag, M. Niederberger, The fascinating world of nanoparticle research. Mater. Today. 16(7–8), 262–271 (2013). https://doi.org/10.1016/j.mattod.2013.07.004

    Article  Google Scholar 

  2. M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology. Adv. Mater. 20(22), 4225–4241 (2008). https://doi.org/10.1002/adma.200703183

    Article  Google Scholar 

  3. J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55(3), 329–347 (2003). https://doi.org/10.1016/S0169-409X(02)00228-4

    Article  Google Scholar 

  4. R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles. Chem Eng J. 119(2–3), 71–81 (2006). https://doi.org/10.1016/j.cej.2006.03.003

    Article  Google Scholar 

  5. Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  Google Scholar 

  6. H. Serier, M. Gaudon, M. Menetrier, Al-doped ZnO powdered materials: Al solubility limit and IR absorption properties. Solid State Sci. 11(7), 1192–1197 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.03.007

    Article  ADS  Google Scholar 

  7. A. Lotus, Y. Kang, J. Walker, R. Ramsier, G. Chase, Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning. Mater. Sci. Eng. B 166(1), 61–66 (2010). https://doi.org/10.1016/j.mseb.2009.10.001

    Article  Google Scholar 

  8. H. Cheng, X. Xu, H. Hng, J. Ma, Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceram. Int. 35(8), 3067–3072 (2009). https://doi.org/10.1016/j.ceramint.2009.04.010

    Article  Google Scholar 

  9. A. Verma, F. Khan, D. Kumar, M. Kar, B. Chakravarty, S. Singh, M. Husain, Sol–gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells. Thin Solid Films 518(10), 2649–2653 (2010). https://doi.org/10.1016/j.tsf.2009.08.010

    Article  ADS  Google Scholar 

  10. R. Zamiri, A. Kaushal, A. Rebelo, J. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40(1), 1635–1639 (2014). https://doi.org/10.1016/j.ceramint.2013.07.054

    Article  Google Scholar 

  11. R. Zamiri, A. Lemos, A. Reblo, H.A. Ahangar, J. Ferreira, Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram. Int. 40(1), 523–529 (2014). https://doi.org/10.1016/j.ceramint.2013.06.034

    Article  Google Scholar 

  12. R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, A.K. Zak, G.P. Drummen, Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J. Alloys Compd. 516, 41–48 (2012). https://doi.org/10.1016/j.jallcom.2011.11.118

    Article  Google Scholar 

  13. Y. Cherifi, A. Chaouchi, Y. Lorgouilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 10(3), 125–135 (2016). https://doi.org/10.2298/PAC1603125C

    Article  Google Scholar 

  14. R. Zamiri, B. Singh, D. Dutta, A. Reblo, J. Ferreira, Electrical properties of Ag-doped ZnO nano-plates synthesized via wet chemical precipitation method. Ceram. Int. 40(3), 4471–4477 (2014). https://doi.org/10.1016/j.ceramint.2013.08.120

    Article  Google Scholar 

  15. C. Ding, W. Lin, B. Chen, F. Zhao, J. Dong, M. Shi, H. Wang, Y. Hsu, A. Djurišić, Super-radiance of excitons in a single ZnO nanostructure. Appl. Phys. Lett. 93(15), 151902 (2008). https://doi.org/10.1063/1.3000612

    Article  ADS  Google Scholar 

  16. B. Zhang, N. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, Formation of highly aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 84(20), 4098–4100 (2004). https://doi.org/10.1063/1.1753061

    Article  ADS  Google Scholar 

  17. V. Ern, A. Switendick, Electronic band structure of TiC, TiN, and TiO. Phys. Rev. 137(6A), A1927 (1965). https://doi.org/10.1103/PhysRev.137.A1927

    Article  ADS  Google Scholar 

  18. J. Chen, X. Deng, M. Gong, W. Liu, S. Wu, Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer. Appl. Surf. Sci. 380, 108–113 (2016). https://doi.org/10.1016/j.apsusc.2016.02.040

    Article  ADS  Google Scholar 

  19. S. Chen, X. Chen, L. Wang, J. Liang, C. Liu, Laser cladding FeCrCoNiTiAl high entropy alloy coatings reinforced with self-generated TiC particles. J. Laser Appl. 29(1), 012004 (2017). https://doi.org/10.2351/1.4966052

    Article  ADS  Google Scholar 

  20. T.Y. Kosolapova, Carbides: Properties, Production, and Applications (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  21. R. Yamanoglu, N. Gulsoy, E. Olevsky, H. Gulsoy, Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering. J. Alloys Compd. 680, 654–658 (2016). https://doi.org/10.1016/j.jallcom.2016.04.176

    Article  Google Scholar 

  22. W. Pyda, J. Morgiel, Nano-TiC obtained through a reaction of MWCNTs with Zr (Y, Ti) O2. J. Microsc. 237(3), 487–496 (2010). https://doi.org/10.1111/j.1365-2818.2009.03303.x

    Article  MathSciNet  Google Scholar 

  23. F. Saba, S.A. Sajjadi, M. Haddad-Sabzevar, F. Zhang, TiC-modified carbon nanotubes, TiC nanotubes and TiC nanorods: synthesis and characterization. Ceram. Int. 44(7), 7949–7954 (2018). https://doi.org/10.1016/j.ceramint.2018.01.233

    Article  Google Scholar 

  24. H.-Y. Sun, X. Kong, W. Sen, Z.-Z. Yi, B.-S. Wang, G.-Y. Liu, Effects of different Sn contents on formation of Ti 2 SnC by self-propagating high-temperature synthesis method in Ti-Sn-C and Ti-Sn-C-TiC systems. Mater. Sci. Pol. 32, 696–701 (2014). https://doi.org/10.2478/s13536-014-0252-7

    Article  ADS  Google Scholar 

  25. W. Sen, H. Sun, B. Yang, B. Xu, W. Ma, D. Liu, Y. Dai, Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. Int. J. Refract. Hard. Met. 28(5), 628–632 (2010). https://doi.org/10.1016/j.ijrmhm.2010.06.005

    Article  Google Scholar 

  26. A. Afir, M. Achour, N. Saoula, X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum. J. Alloys Compd. 288(1–2), 124–140 (1999). https://doi.org/10.1016/S0925-8388(99)00112-7

    Article  Google Scholar 

  27. D. Bavbande, R. Mishra, J. Juneja, Studies on the kinetics of synthesis of TiC by calciothermic reduction of TiO2 in presence of carbon. J. Therm. Anal. Calorim. 78(3), 775–780 (2004). https://doi.org/10.1007/s10973-004-0445-0

    Article  Google Scholar 

  28. S.J. Stott, R.J. Mortimer, S.E. Dann, M. Oyama, F. Marken, Electrochemical properties of core-shell TiC–TiO2 nanoparticle films immobilized at ITO electrode surfaces. Phys. Chem. Chem. Phys. 8(46), 5437–5443 (2006). https://doi.org/10.1039/B610391J

    Article  Google Scholar 

  29. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, S. Kanagesan, T.R. Shojaei, Carbosilisiothermic reduction of rutile to produce nano-sized particles of TiC and its composite with SiO2. Metall. Mater. Trans. B. 45, 1615–1621 (2014). https://doi.org/10.1007/s11663-014-0110-3

    Article  Google Scholar 

  30. R. Mahmoodian, M. Hamdi, M. Hassan, A. Akbari, Mechanical and chemical characterization of a TiC/C system synthesized using a focus plasma arc. PLoS One 10(6), e0130836 (2015). https://doi.org/10.1371/journal.pone.0130836

    Article  Google Scholar 

  31. X. Yuan, L. Cheng, L. Kong, X. Yin, L. Zhang, Preparation of titanium carbide nanowires for application in electromagnetic wave absorption. J. Alloys Compd. 596, 132–139 (2014). https://doi.org/10.1016/j.jallcom.2014.01.022

    Article  Google Scholar 

  32. F. Bezgin, N. Ayaz, K. Demirelli, Synthesis, characterization, and dielectric properties of polymers functionalized with coumarone and diethanolamine. J. Appl. Polym. Sci. 132(26), 42164 (2015). https://doi.org/10.1002/app.42164

    Article  Google Scholar 

  33. L.-Z. Chen, D.-D. Huang, J.-Z. Ge, F.-M. Wang, A novel Ag (I) coordination polymers based on 2-(pyridin-4-yl)-1H-imidazole-4, 5-dicarboxylic acid: syntheses, structures, ferroelectric, dielectric and optical properties. Inorg. Chim. Acta 406, 95–99 (2013). https://doi.org/10.1016/j.ica.2013.07.013

    Article  Google Scholar 

  34. W.-Q. Liao, Q.-Q. Zhou, Y. Zhang, L. Jin, Synthesis, structures and dielectric properties of two five-coordinate copper (II) complexes based on N-chloromethyl-1, 4-diazabicyclo [2.2. 2] octane. Inorg. Chem. Commun. 33, 161–164 (2013). https://doi.org/10.1016/j.inoche.2013.04.031

    Article  Google Scholar 

  35. N. Vanitha, S. Kanchana, R. Basavaraj, S.M. Watage, Structural and optical properties of polyvinyl alcohol/zinc oxide nanocomposites. Phys. Status Solidi A Appl. Mater. Sci. 220(12), 2300052 (2023). https://doi.org/10.1002/pssa.202300052

    Article  ADS  Google Scholar 

  36. M. Dinesha, G. Prasanna, C. Naveen, H. Jayanna, Structural and dielectric properties of Fe doped ZnO nanoparticles. Ind. J. Phys. 87, 147–153 (2013). https://doi.org/10.1007/s12648-012-0182-3

    Article  Google Scholar 

  37. T. Oshio, K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, Effect of Mn doping on the electric and dielectric properties of ZnO epitaxial films. J. Appl. Phys. 103(9), 093717 (2008). https://doi.org/10.1063/1.2905315

    Article  ADS  Google Scholar 

  38. C.-S. Hsu, C.-L. Huang, Structural and dielectric properties of ZnO-Doped (Zr 0.8 Sn 0.2) TiO4 films at radio frequency. Integr. Ferroelectr. 51(1), 127–136 (2003). https://doi.org/10.1080/10584580390238211

    Article  ADS  Google Scholar 

  39. J. Jose, M.A. Khadar, Role of grain boundaries on the electrical properties of ZnO–Ag nanocomposites: an impedance spectroscopic study. Acta Mater. 49(4), 729–735 (2001). https://doi.org/10.1016/S1359-6454(00)00369-4

    Article  ADS  Google Scholar 

  40. M. Jung, J. Koo, S. Oh, B. Lee, W. Lee, S. Ha, Y. Cho, J. Chang, Influence of growth mode on the structural, optical, and electrical properties of In-doped ZnO nanorods. Appl. Phys. Lett. 94(4), 041906 (2009). https://doi.org/10.1063/1.3064919

    Article  ADS  Google Scholar 

  41. K. Koran, F. Özen, F. Biryan, K. Demirelli, A.O. Görgülü, Eu+ 3-doped chalcone substituted cyclotriphosphazenes: synthesis, characterizations, thermal and dielectrical properties. Inorg. Chim. Acta 450, 162–169 (2016). https://doi.org/10.1016/j.ica.2016.05.043

    Article  Google Scholar 

  42. S. Fratini, A. Morpurgo, S. Ciuchi, Electron–phonon and electron–electron interactions in organic field effect transistors. J. Phys. Chem. Solids. 69(9), 2195–2198 (2008). https://doi.org/10.1016/j.jpcs.2008.03.039

    Article  ADS  Google Scholar 

  43. A.-M. Haughey, B. Guilhabert, A.L. Kanibolotsky, P. Skabara, G. Burley, M. Dawson, N. Laurand, An organic semiconductor laser based on star-shaped truxene-core oligomers for refractive index sensing. Sens. Actuators B Chem. 185, 132–139 (2013). https://doi.org/10.1016/j.snb.2013.04.026

    Article  Google Scholar 

  44. Y. Tsai, F. Juang, T. Yang, M. Yokoyama, L. Ji, Y.-K. Su, Effects of different buffer layers in flexible organic light-emitting diodes. J. Phys. Chem. Solids. 69(2–3), 764–768 (2008). https://doi.org/10.1016/j.jpcs.2007.07.103

    Article  ADS  Google Scholar 

  45. P.D. File, S. Kabekkodu, International Centre for Diffraction Data (Newtown Square, New York, 2007)

    Google Scholar 

  46. M.J. Akhtar, M. Ahamed, S. Kumar, M.M. Khan, J. Ahmad, S.A. Alrokayan, Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 7, 845–857 (2012). https://doi.org/10.2147/IJN.S29129

    Article  Google Scholar 

  47. S.A. Hosseini, S. Babaei, Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM). J. Braz. Chem. Soc. 28, 299–307 (2017). https://doi.org/10.5935/0103-5053.20160176

    Article  Google Scholar 

  48. J. Zhou, F. Zhao, Y. Wang, Y. Zhang, L. Yang, Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. J. Lumin. 122, 195–197 (2007). https://doi.org/10.1016/j.jlumin.2006.01.089

    Article  Google Scholar 

  49. Z.M. Khoshhesab, M. Sarfaraz, M.A. Asadabad, Preparation of ZnO nanostructures by chemical precipitation method. Synth. React. Inorg. Met. Chem. 41(7), 814–819 (2011). https://doi.org/10.1080/15533174.2011.591308

    Article  Google Scholar 

  50. W. Mai, Y. Zuo, X. Zhang, K. Leng, R. Liu, L. Chen, X. Lin, Y. Lin, R. Fu, D. Wu, A versatile bottom-up interface self-assembly strategy to hairy nanoparticle-based 2D monolayered composite and functional nanosheets. Chem. Commun. 55(69), 10241–10244 (2019). https://doi.org/10.1039/C9CC04664J

    Article  Google Scholar 

  51. J. Hassan, M. Ikram, A. Ul-Hamid, M. Imran, M. Aqeel, S. Ali, Application of chemically exfoliated boron nitride nanosheets doped with co to remove organic pollutants rapidly from textile water. Nanoscale Res. Lett. 15, 1–13 (2020). https://doi.org/10.1186/s11671-020-03315-y

    Article  Google Scholar 

  52. Y.M. Lvov, P. Pattekari, X. Zhang, V. Torchilin, Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 27(3), 1212–1217 (2011). https://doi.org/10.1021/la1041635

    Article  Google Scholar 

  53. S. Madivalappa, V.M. Jali, A. Jain, Dielectric properties of γ‐irradiated, stretched, and poled PVDF thin films, ed. By Sanjay S. Latthe in Macromolecular Symposia, Vol. 387, (Wiley Online Library, 2019), p. 1800178.

  54. L. Whittig, W. Allardice, X-ray diffraction techniques. Methods Soil Anal. Part Phys. Mineral. Methods 5, 331–362 (1986). https://doi.org/10.2136/sssabookser5.1.2ed.c12

    Article  Google Scholar 

  55. K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, A.C. Bose, Synthesis and characterizations of Ag-doped CdO nanoparticles for PN junction diode application. Mater. Sci. Semicond. Process. 79, 74–91 (2018). https://doi.org/10.1016/j.mssp.2018.02.006

    Article  Google Scholar 

  56. V. Mote, Y. Purushotham, B. Dole, Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol–gel method. Mater. Des. 96, 99–105 (2016). https://doi.org/10.1016/j.matdes.2016.02.016

    Article  Google Scholar 

  57. P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, R. Goyal, In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition. Bull. Mater. Sci. 31, 573–577 (2008). https://doi.org/10.1007/s12034-008-0089-y

    Article  Google Scholar 

  58. C. Zegadi, K. Abdelkebir, D. Chaumont, M. Adnane, S. Hamzaoui, Influence of Sn low doping on the morphological, structural and optical properties of ZnO films deposited by sol gel dip-coating. AMPC 4(5), 46474 (2014). https://doi.org/10.4236/ampc.2014.45012

    Article  Google Scholar 

  59. N.M. Azizah, S. Muhammady, M.A.K. Purbayanto, E. Nurfani, T. Winata, E. Sustini, R. Widita, Y. Darma, Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film. Prog. Nat. Sci. Mater. Int. 30(1), 28–34 (2020). https://doi.org/10.1016/j.pnsc.2020.01.006

    Article  Google Scholar 

  60. J. Choi, G.S. An, Anionic surface modification of titanium carbide nanoparticles and enhancements in their dispersibility and rheological behavior in aqueous solution. J. Korean Ceram. Soc. 59(2), 202–207 (2022). https://doi.org/10.1007/s43207-021-00174-w

    Article  Google Scholar 

  61. L. Wang, J. Luo, S. Shan, E. Crew, J. Yin, C.-J. Zhong, B. Wallek, S.S. Wong, Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal. Chem. 83(22), 8688–8695 (2011). https://doi.org/10.1021/ac202164p

    Article  Google Scholar 

  62. E. Çalışkan, Chemoselective synthesis of tyrosine-based polymers and comparison of their thermal, kinetic, and dielectric properties. ChemistrySelect 7(29), e202202010 (2022). https://doi.org/10.1002/slct.202202010

    Article  Google Scholar 

  63. F. Biryan, A.M. Abubakar, K. Demirelli, Product analysis, electrical and dielectric properties depending on thermal influence of poly (N-isopropyl acrylamide)/graphite-filled composite. Thermochim. Acta 669, 66–79 (2018). https://doi.org/10.1016/j.tca.2018.09.009

    Article  Google Scholar 

  64. F. Biryan, K. Demirelli, Thermal degradation kinetic, electrical and dielectric behavior of brush copolymer with a polystyrene backbone and polyacrylate-amide side chains/nanographene-filled composites. J. Mol. Struct. 1186, 187–203 (2019). https://doi.org/10.1016/j.molstruc.2019.03.026

    Article  ADS  Google Scholar 

  65. G. Joesna, P. Saravanan, R.Z. Ferin, T. Gunachitra, D. Sankar, S. Tamilselvan, M. Meena, K. SenthilKannan, M. Vimalan, M.G. Mohamed, Domestic microwave supported green synthesis of ZnO nanoparticles for electronic, mechano, rheological and frequency intensifying applications. J. Mater. Sci. Mater. Electron. 33(17), 14144–14158 (2022). https://doi.org/10.1007/s10854-022-08344-0

    Article  Google Scholar 

  66. J. Wei, G. Ji, C. Zhang, L. Yan, Q. Luo, C. Wang, Q. Chen, J. Yang, L. Chen, C.-Q. Ma, Silane-capped ZnO nanoparticles for use as the electron transport layer in inverted organic solar cells. ACS Nano 12(6), 5518–5529 (2018). https://doi.org/10.1021/acsnano.8b01178

    Article  Google Scholar 

Download references

Acknowledgements

The nanoparticles produced in the study were applied to the Turkish Patent Institute with the title “Zinc oxide matrix titanium carbide reinforced nanocomposite material and preparation method”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the study. Preparation and characterization of nanoparticles were performed by CKM and TG. The first draft and general comments of the manuscript were written by CKM and TG, CO and SB. FB and EG contributed to the learning and interpretation of the dielectric properties of nanoparticles. EG contributed to the interpretation of the experiments and drafting the article. All authors have read and approved the submitted version of the article.

Corresponding authors

Correspondence to Turan Gurgenc or Stefano Bellucci.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurgenc, T., Macit, C.K., Biryan, F. et al. Investigation of dielectric parameters and AC conductivity of ZnO: TiC nanocomposite powders. Appl. Phys. A 129, 649 (2023). https://doi.org/10.1007/s00339-023-06932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06932-3

Keywords

Navigation