Skip to main content

Advertisement

Log in

Micromagnetic realization of energy-based models using stochastic magnetic tunnel junctions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Energy-based models (EBMs) can bridge physics, machine learning, and statistics. EBMs provide a unified and powerful platform to describe, learn, and optimize complex systems. In this paper, we propose a neuromorphic implementation of EBMs using a network of stochastic magnetic tunnel junctions (MTJs) that can perform energy minimization and solve optimization problems. Our implementation builds on the Object Oriented MicroMagnetic Framework (OOMMF). We derive the different energy terms and map them to the micromagnetic Landau-Lifshitz-Gilbert (LLG) equation. We then develop a C +  + module for EBMs which integrates seamlessly with OOMMF. We demonstrate our implementation on a full set of logic gates using stochastic MTJs networks. Our method offers several advantages, including fast modeling of EBMs with spintronic devices and design insights for stochastic MTJ-based neuromorphic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its supplementary materials.

References

  1. V.V. Zhirnov, R.K. Cavin, J.A. Hutchby, G.I. Bourianoff, Proc. IEEE 91, 1934–1939 (2003)

    Google Scholar 

  2. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13–24 (2013)

    ADS  Google Scholar 

  3. K.Y. Camsari, M.M. Torunbalci, W.A. Borders, H. Ohno, S. Fukami, Phys. Rev. Appl. 15, 044049 (2021)

    ADS  Google Scholar 

  4. K. Kobayashi, W.A. Borders, S. Kanai, K. Hayakawa, H. Ohno, S. Fukami, Appl. Phys. Lett. 119, 132406 (2021)

    ADS  Google Scholar 

  5. K. Kobayashi, K. Hayakawa, J. Igarashi, W.A. Borders, S. Kanai, H. Ohno, S. Fukami, Phys. Rev. Appl. 18, 054085 (2022)

    ADS  Google Scholar 

  6. L. Yang, J.-P. Wang, in: 2017 IEEE Int. Electron Devices Meet., 2017, pp. IEDM17–801.

  7. M.W. Daniels, A. Madhavan, P. Talatchian, A. Mizrahi, M.D. Stiles, Phys. Rev. Appl. 13, 034016 (2020)

    ADS  Google Scholar 

  8. Y. Wang, Y. Zhang, E.Y. Deng, J.O. Klein, L.A.B. Naviner, W.S. Zhao, Microelectron. Reliab. 54, 1774–1778 (2014)

    Google Scholar 

  9. W.A. Borders, A.Z. Pervaiz, S. Fukami, K.Y. Camsari, H. Ohno, S. Datta, Nature 573, 390–393 (2019)

    ADS  Google Scholar 

  10. J. Kaiser, W.A. Borders, K.Y. Camsari, S. Fukami, H. Ohno, S. Datta, Phys. Rev. Appl. 17, 014016 (2022)

    ADS  Google Scholar 

  11. J. Kaiser, S. Datta, Appl. Phys. Lett. 119, 150503 (2021)

    ADS  Google Scholar 

  12. A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier, D. Querlioz, Nat. Commun. 9, 1–11 (2018)

    ADS  Google Scholar 

  13. R. Faria, K.Y. Camsari, S. Datta, I.E.E.E. Magn, Lett. 8, 4105305 (2017)

    Google Scholar 

  14. N. Onizawa, D. Katagiri, W.J. Gross, T. Hanyu, Proc. 2014 IEEE/ACM Int. Symp. Nanoscale Archit. Nanoarch 2014 (2014) 59–64.

  15. R. Zand, K.Y. Camsari, S. Datta, R.F. Demara, ACM J. Emerg. Technol. Comput. Syst. 15, 1–22 (2019)

    Google Scholar 

  16. F.X. Liang, P. Sahu, M.H. Wu, J.H. Wei, S.S. Sheu, T.H. Hou, 2020 Int. Symp. VLSI Technol. Syst. Appl. VLSI-TSA 2020, 151–152 (2020)

    Google Scholar 

  17. K.Y. Camsari, P. Debashis, V. Ostwal, A.Z. Pervaiz, T. Shen, Z. Chen, S. Datta, J. Appenzeller, Proc. IEEE 108, 1322–1337 (2020)

    Google Scholar 

  18. C. Safranski, J. Kaiser, P. Trouilloud, P. Hashemi, G. Hu, J.Z. Sun, Nano Lett. 21, 2040–2045 (2021)

    ADS  Google Scholar 

  19. K.Y. Camsari, B.M. Sutton, S. Datta, Appl. Phys. Rev. 6, 011305 (2019)

    ADS  Google Scholar 

  20. K.Y. Camsari, R. Faria, B.M. Sutton, S. Datta, Phys. Rev. X 7, 1–19 (2017)

    Google Scholar 

  21. S. Liu, T.P. Xiao, J. Kwon, B.J. Debusschere, S. Agarwal, J.A.C. Incorvia, C.H. Bennett, Front. Nanotechnol. 4, 1–16 (2022)

    Google Scholar 

  22. R. Faria, K.Y. Camsari, S. Datta, AIP Adv. 8, 045101 (2018)

    ADS  Google Scholar 

  23. B. Sutton, K.Y. Camsari, B. Behin-Aein, S. Datta, Sci. Rep. 7, 1–9 (2017)

    Google Scholar 

  24. O. Hassan, A. Dissertation, Evaluation of stochastic magnetic tunnel junctions as building blocks for probabilistic computing, 2020.

  25. W. Chen, H. Tang, Y. Wang, X. Hu, Y. Lin, T. Min, Y. Xie, Micromachines 14, 258 (2023)

    Google Scholar 

  26. T. Greenberg-Toledo, B. Perach, I. Hubara, D. Soudry, S. Kvatinsky, Semicond. Sci. Technol. 36, 114003 (2021)

    ADS  Google Scholar 

  27. A. Nisar, F.A. Khanday, B.K. Kaushik, Nanotechnology 31, 504001 (2020)

    Google Scholar 

  28. P. Huembeli, J.M. Arrazola, N. Killoran, M. Mohseni, P. Wittek, Quantum Mach. Intell. 4, 1–15 (2022)

    Google Scholar 

  29. M. Arbel, L. Zhou, A. Gretton, ArXiv: 2003.05033 (2021).

  30. M.J. Donahue, D.G. Porter, Interag. Rep. NISTIR 6376, Natl. Inst. Stand. Technol. MD (1999).

  31. B.A. Cipra, Am. Math. Mon. 94, 937–957 (1987)

    Google Scholar 

  32. E. Vives, M.L. Rosinberg, G. Tarjus, Phys. Rev. B Condens. Matter Mater. Phys. 71, 134424 (2005)

    ADS  Google Scholar 

  33. U.B. Arnalds, J. Chico, H. Stopfel, V. Kapaklis, O. Bärenbold, M.A. Verschuuren, U. Wolff, V. Neu, A. Bergman, B. Hjörvarsson, New J. Phys. 18, 023008 (2016)

    ADS  Google Scholar 

  34. M.D. Leblanc, M.L. Plumer, J.P. Whitehead, J.I. Mercer, Phys. Rev. B Condens. Matter Mater. Phys. 82, 174435 (2010)

    ADS  Google Scholar 

  35. R. Gozdur, Algorithms 13, 134 (2020)

    MathSciNet  Google Scholar 

  36. D.I. Albertsson, M. Zahedinejad, A. Houshang, R. Khymyn, J. Åkerman, A. Rusu, Appl. Phys. Lett. 118, 112404 (2021)

    ADS  Google Scholar 

  37. R. Behbahani, M.L. Plumer, I. Saika-Voivod, Phys. Rev. Appl. 18, 034034 (2022)

    ADS  Google Scholar 

  38. R. Bjørk, E.B. Poulsen, K.K. Nielsen, A.R. Insinga, J. Magn. Magn. Mater. 535, 168057 (2021)

    Google Scholar 

  39. L. Baňas, Lect. Notes Comput. Sci. 3401, 158–165 (2005)

    Google Scholar 

  40. H. Ren, X. Zhuang, Y. Cai, T. Rabczuk, Int. J. Numer. Methods Eng. 2, 1451–1476 (2016)

    Google Scholar 

  41. T. Rabczuk, H. Ren, X. Zhuang, Comput. Mater. Contin. 59, 31–55 (2019)

    Google Scholar 

  42. H. Ren, X. Zhuang, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 367, 113132 (2020)

    ADS  Google Scholar 

  43. S. Kanai, K. Hayakawa, H. Ohno, S. Fukami, Phys. Rev. B 103, 094423 (2021)

    ADS  Google Scholar 

  44. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, AIP Adv. 4, 107133 (2014)

    ADS  Google Scholar 

  45. A. Mondal, A. Srivastava, ACM J. Emerg. Technol. Comput. Syst. 16, 1–27 (2019)

    Google Scholar 

  46. W.F. Brown, Phys. Rev. 130, 1677–1686 (1963)

    ADS  Google Scholar 

  47. J.D. Biamonte, Phys. Rev. A At. Mol. Opt. Phys. 77, 052331 (2008)

    ADS  Google Scholar 

  48. M. Gu, A. Perales, Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 86, 011116 (2012)

    ADS  Google Scholar 

  49. J.D. Whitfield, M. Faccin, J.D. Biamonte, EPL 99, 57004 (2012)

    ADS  Google Scholar 

  50. E.K. Grant, T.S. Humble, Oxford Res. Encycl. Phys. 2, 1–23 (2020)

    Google Scholar 

  51. T. Albash, D.A. Lidar, Rev. Mod. Phys. 90, 15002 (2018)

    ADS  Google Scholar 

  52. K. Hayakawa, S. Kanai, T. Funatsu, J. Igarashi, B. Jinnai, W.A. Borders, H. Ohno, S. Fukami, Phys. Rev. Lett. 126, 117202 (2021)

    ADS  Google Scholar 

  53. R. Faria, J. Kaiser, K.Y. Camsari, S. Datta, Front. Comput. Neurosci. 15, 1–10 (2021)

    Google Scholar 

  54. K.Y. Camsari, S. Chowdhury, S. Datta, Phys. Rev. Appl. 12, 034061 (2019)

    ADS  Google Scholar 

  55. S. Chowdhury, S. Datta, K.Y. Camsari, in: 2019 IEEE Int. Electron Devices Meet., 2019.

  56. B. Scellier, Y. Bengio, Front. Comput. Neurosci. 11, 1–13 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Agency for Science, Technology and Research (A*STAR) under Career Development Fund (Project No. C210812054).

Author information

Authors and Affiliations

Authors

Contributions

BC supervised the study, analyzed the data, performed part of simulations, and wrote the manuscript. YH wrote C +  + codes and incorporated them into OOMMF software packages to realize the energy-based models. CKG analyzed the data, reviewed, and edited the manuscript. MZ supervised the study, performed part of simulations, and reviewed the manuscript.

Corresponding authors

Correspondence to BingJin Chen or Minggang Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships which could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Hou, Y., Gan, C.K. et al. Micromagnetic realization of energy-based models using stochastic magnetic tunnel junctions. Appl. Phys. A 129, 655 (2023). https://doi.org/10.1007/s00339-023-06931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06931-4

Keywords

Navigation