Skip to main content
Log in

A first-principles study of 3d transition-metal atoms embedded monolayer B3O3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The adsorption of 3d transition-metal (TM) atoms on monolayer B3O3 has been examined using density functional theory. It is revealed that the hollow site of the B3O3 sheet is where 3d TM atoms are adsorbed. Charge is transferred from 3d TM atoms to the B and O atoms of the sheets. The pristine monolayer of B3O3 is a nonmagnetic semiconductor, while TM-embedded systems exhibit diverse electronic properties depending on the adatom types. The nonmagnetic semiconductor for Zn, and nonmagnetic metal for Sc, Ti, Ni, and Cu are observed. The half metallic properties are appeared in the B3O3 sheet with adsorbed Cr and Mn. The V, Fe, and Co-embedded systems are bipolar magnetic semiconductors. Our results declare that the TM-embedded B3O3 sheets with various electronic and magnetic properties are proper for electronic and spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable as no new data were generated during this study.

References

  1. D. Geng, H.Y. Yang, Adv. Mater. 30, 1800865 (2018)

    Google Scholar 

  2. K. Wan, Y. Li, Y. Wang, G. Wei, Nanomaterials 11, 1 (2021)

    Google Scholar 

  3. T. Liu, J. Ding, Z. Su, G. Wei, Mater Today Energy 6, 79 (2017)

    Google Scholar 

  4. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Nature Nanotechnol. 9, 768 (2014)

    ADS  Google Scholar 

  5. M.J. Molaei, J Drug Deliv Sci Technol 61, 101830 (2021)

    Google Scholar 

  6. A. Kumar, K. Sharma, A.R. Dixit, J Mater Sci 54, 5992 (2019)

    ADS  Google Scholar 

  7. M. Sang, J. Shin, K. Kim, K.J. Yu, Nanomaterials 9, 374 (2019)

    Google Scholar 

  8. A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev Mod Phys. 81, 109 (2009)

    ADS  Google Scholar 

  9. S.K. Tiwari, S. Sahoo, N. Wang, A. Huczko, J Sci Adv Mater Devices 5, 10 (2020)

    Google Scholar 

  10. X. Chen, Y. Tian, Energy Fuels 35, 3572 (2021)

    Google Scholar 

  11. A. Dubey, S. Dave, M. Lakhani, and A. Sharma, International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016 2435 (2016)

  12. S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Electron. 4, 651–687 (2015)

    Google Scholar 

  13. X. Li, B.H. Li, Y.B. He, F.Y. Kang, New Carbon Mater. 35, 619 (2020)

    Google Scholar 

  14. Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, D. Golberg, Chem Rev 122, 1000 (2022)

    Google Scholar 

  15. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, Ś Vizzini, B. Ealet, B. Aufray, Appl Phys Lett 97, 223109 (2010)

    ADS  Google Scholar 

  16. S. Cahangirov, M. Topsakal, E. Aktürk, H. Šahin, S. Ciraci, Phys Rev Lett 102, 236804 (2009)

    ADS  Google Scholar 

  17. X. Huang, Z. Zeng, H. Zhang, Chem Soc Rev 42, 1934 (2013)

    Google Scholar 

  18. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21, 2889 (2009)

    Google Scholar 

  19. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat Chem 5, 263 (2013)

    Google Scholar 

  20. Y. Lin, T.V. Williams, J.W. Connell, J Phys Chem Lett. 1, 277 (2010)

    Google Scholar 

  21. M. Stredansky, A. Sala, T. Fontanot, R. Costantini, C. Africh, G. Comelli, L. Floreano, A. Morgante, A. Cossaro, Chem. Commun. 54, 3971 (2018)

    Google Scholar 

  22. S. Lin, J. Gu, H. Zhang, Y. Wang, Z. Chen, FlatChem 9, 27 (2018)

    Google Scholar 

  23. P.A. Denis, S. Ullah, F. Sato, RSC Adv 9, 37526 (2019)

    ADS  Google Scholar 

  24. R. Rahimi, M. Solimannejad, J. Mol. Liq. 354, 118855 (2022)

    Google Scholar 

  25. R. Rahimi, M. Solimannejad, New J. Chem. 45, 15328 (2021)

    Google Scholar 

  26. R. Rahimi, M. Solimannejad, Colloid Nanosci J 1, 26 (2023)

    Google Scholar 

  27. R. Rahimi, M. Solimannejad, J. Mol. Model. 27, 347 (2021)

    Google Scholar 

  28. M.A. Awad, A. Majdi, Z.S. Abbas, M.M. Kadhim, M.A. Hadi, S.K. Hachim, M. Barzan, W.R. Kadhum, S.A.H. Abdullaha, Comp. Theor. Chem. 1220, 114008 (2023)

    Google Scholar 

  29. H. Sevinçli, M. Topsakal, E. Durgun, S. Ciraci, Phys Rev B Condens Matter Mater Phys 77, 195434 (2008)

    ADS  Google Scholar 

  30. J. He, S.Y. Ma, P. Zhou, C.X. Zhang, C. He, L.Z. Sun, J. Phys. Chem. C 116, 26313 (2012)

    Google Scholar 

  31. L. Li, H. Zhang, X. Cheng, Y. Miyamoto, Appl Surf Sci 441, 647 (2018)

    ADS  Google Scholar 

  32. R. Majidi, A. Ramazani, T. Rabczuk, Physica E Low Dimens Syst Nanostruct 133, 114806 (2021)

    Google Scholar 

  33. K. Tarawneh, Y. Al-Khatatbeh, J. Saudi Chem. Soc. 27, 101611 (2023)

    Google Scholar 

  34. User’s manual of OpenMX Ver. 3.9, (n.d.). http://www.openmx-square.org/openmx_man3.9/index.html (Accessed October 5, 2022)

  35. D.M. Ceperley, B.J. Alder, Phys Rev Lett 45, 566 (1980)

    ADS  Google Scholar 

  36. J.P. Perdew, Y. Wang, Phys Rev B 45, 13244 (1992)

    ADS  Google Scholar 

  37. J.P. Perdew, A. Zunger, Phys Rev B 23, 5048 (1981)

    ADS  Google Scholar 

  38. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    ADS  Google Scholar 

  39. S. Grimme, S. Ehrlich, L. Goerigk, J Comput Chem 32, 1456 (2011)

    Google Scholar 

  40. E. Durgun, S. Dag, S. Ciraci, O. Gülseren, J. Phys. Chem. B 108, 575 (2003)

    Google Scholar 

  41. Q. Pang, L. Li, C.L. Zhang, X.M. Wei, Y.L. Song, Mater Chem Phys 160, 96 (2015)

    Google Scholar 

  42. X. Li, X. Wu, Z. Li, J. Yang, J.G. Hou, Nanoscale 4, 5680 (2012)

    ADS  Google Scholar 

  43. X. Li, J. Yang, Natl Sci Rev 3, 365 (2016)

    Google Scholar 

Download references

Funding

The author was supported by Shahid Rajaee Teacher Training University under Grant 5038.

Author information

Authors and Affiliations

Authors

Contributions

RM: conceived of the presented idea, performed the computations, and wrote the manuscript.

Corresponding author

Correspondence to Roya Majidi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This work did not require ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, R. A first-principles study of 3d transition-metal atoms embedded monolayer B3O3. Appl. Phys. A 129, 641 (2023). https://doi.org/10.1007/s00339-023-06927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06927-0

Keywords

Navigation