Skip to main content
Log in

Fast switching photodetector based on HfO2 thin film deposited using electron beam evaporation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study reports the electrical properties of a fast-switching photodetector based on a Hafnium Oxide (HfO2) thin film (TF) device with gold (Au) Schottky electrodes. It also presents the deposition of an HfO2 TF device using a conventional electron beam evaporation method on p-type Silicon (Si) substrates. XRD analysis confirmed the amorphous structural nature of HfO2 TF, and cross-sectional FESEM analysis shows growth of ~ 140 nm HfO2 on the p-Si substrate. Fourier transforms infrared (FTIR) analysis confirms the HfO2 bonding. Furthermore, the UV–Vis spectroscopy demonstrates that the device exhibits predominant absorption within the UV region. At room temperature, the electrical analysis of the HfO2 TF device was conducted. The device shows a good detectivity (D*) of 1.30 \(\times\) 1012 Jones, a low noise equivalent power (NEP) value of 3.23 \(\times\) 10–12 W, and a responsivity of 300 mA/W with an internal gain of 1.49. It was also observed that the device has a fast-switching response at + 2 V with fall and rise times of 94 ms and 93 ms, respectively, making it a suitable device for photodetector application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This article contains the data that supports the findings of the study.

References

  1. R. Rajkumari, N.K. Singh, J. Nanosci. Nanotechnol. 20, 3274 (2020)

    Google Scholar 

  2. N.M. Devi, N.K. Singh, Mater. Res. Bull. 117, 103 (2019)

    Google Scholar 

  3. S.R. Meitei, C. Ngangbam, N.K. Singh, Opt. Mater. 117, 111190 (2021)

    Google Scholar 

  4. L.T. Chanu, N.K. Singh, Appl. Phys. A 128, 993 (2022)

    ADS  Google Scholar 

  5. Ph.N. Meitei, B. Moirangthem, C. Ngangbam, M.W. Alam, N.K. Singh, J. Mater. Sci.: Mater. Electron. 33, 10705 (2022)

    Google Scholar 

  6. D. Buckley, R. McCormack, C. O’Dwyer, J. Phys. D: Appl. Phys. 50, 16LT01 (2017)

    Google Scholar 

  7. P. Xia, X. Feng, R.J. Ng, S. Wang, D. Chi, C. Li, Z. He, X. Liu, K.-W. Ang, Sci. Rep. 7, 40669 (2017)

    ADS  Google Scholar 

  8. C.-Y. Yang, J.-G. Hwu, IEEE Sensors J. 12, 2313 (2012)

    ADS  Google Scholar 

  9. G. Luongo, F. Giubileo, L. Genovese, L. Iemmo, N. Martucciello, A. Di Bartolomeo, Nanomaterials 7, 158 (2017)

    Google Scholar 

  10. J.-Y. Cheng, H.-T. Lu, J.-G. Hwu, Appl. Phys. Lett. 96, 233506 (2010)

    ADS  Google Scholar 

  11. M. Gutowski, J. E. Jaffe, C.-L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, (2014)

  12. H.A. Qayyum, M.F. Al-Kuhaili, S.M.A. Durrani, T. Hussain, S.H.A. Ahmad, M. Ikram, J. Alloy. Compd. 747, 374 (2018)

    Google Scholar 

  13. M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, M. Grasserbauer, Thin Solid Films 250, 72 (1994)

    ADS  Google Scholar 

  14. M.F. Al-Kuhaili, Opt. Mater. 27, 383 (2004)

    ADS  Google Scholar 

  15. R. Zazpe, M. Ungureanu, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, D.F. Pickup, C. Rogero, L.E. Hueso, J. Mater. Chem. C 2, 3204 (2014)

    Google Scholar 

  16. C. Quinteros, R. Zazpe, F.G. Marlasca, F. Golmar, F. Casanova, P. Stoliar, L. Hueso, P. Levy, J. Appl. Phys. 115, 024501 (2014)

    ADS  Google Scholar 

  17. C. Lu, J. Yu, X.-W. Chi, G.-Y. Lin, X.-L. Lan, W. Huang, J.-Y. Wang, J.-F. Xu, C. Wang, C. Li, S.-Y. Chen, C. Liu, H.-K. Lai, Appl. Phys. Express 9, 041501 (2016)

    ADS  Google Scholar 

  18. Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, Nanotechnology 21, 045202 (2010)

    ADS  Google Scholar 

  19. G.S. Kim, T.H. Park, H.J. Kim, T.J. Ha, W.Y. Park, S.G. Kim, C.S. Hwang, J. Appl. Phys. 124, 024102 (2018)

    ADS  Google Scholar 

  20. C.-W. Hsu, J. Huang, Y.-M. Tseng, T.-H. Hou, W.-H. Chang, W.-Y. Jang, and C.-H. Lin, (n.d.)

  21. C.D. Liang, R. Ma, Y. Su, A. O’Hara, E.X. Zhang, M.L. Alles, P. Wang, S.E. Zhao, S.T. Pantelides, S.J. Koester, R.D. Schrimpf, D.M. Fleetwood, IEEE Trans. Nucl. Sci. 65, 1227 (2018)

    ADS  Google Scholar 

  22. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003)

    ADS  Google Scholar 

  23. C.-C. Li, K.-S. Chang-Liao, W.-F. Chi, M.-C. Li, T.-C. Chen, Su. Tzu-Hsiang, Y.-W. Chang, C.-C. Tsai, L.-J. Liu, Fu. Chung-Hao, Lu. Chun-Chang, IEEE Electron. Device Lett. 37, 12 (2016)

    ADS  Google Scholar 

  24. C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, (n.d.)

  25. Y. Shi, K. Saito, H. Ishikuro, T. Hiramoto, J. Appl. Phys. 84, 2358 (1998)

    ADS  Google Scholar 

  26. A. Hakeem, M. Ramzan, E. Ahmed, A.M. Rana, N.R. Khalid, N.A. Niaz, A. Shakoor, S. Ali, U. Asghar, M.Y. Nadeem, Mater. Sci. Semicond. Process. 30, 98 (2015)

    Google Scholar 

  27. B. Moirangthem, P.N. Meitei, A.K. Debnath, N.K. Singh, J. Mater. Sci.: Mater. Electron. 34, 306 (2023)

    Google Scholar 

  28. H. Miyata, K. Kuroda, J. Am. Chem. Soc. 121, 7618 (1999)

    Google Scholar 

  29. R. Amrani, P. Abboud, L. Chahed, Y. Cuminal, CSTA 01, 62 (2012)

    Google Scholar 

  30. A. El-Denglawey, M.M. Makhlouf, M. Dongol, M.M. El-Nahass, J. Mater. Sci.: Mater. Electron. 26, 5603 (2015)

    Google Scholar 

  31. Ç. Çetinkaya, E. Çokduygulular, Y. Özen, İ Candan, B. Kınacı, S. Özçelik, J. Mater. Sci.: Mater. Electron. 32, 12330 (2021)

    Google Scholar 

  32. X. Cui, K. Tuokedaerhan, H. Cai, Z. Lu, Coatings 12, 439 (2022)

    Google Scholar 

  33. K. Yan, W. Yao, Y. Zhao, L. Yang, J. Cao, Y. Zhu, Appl. Surf. Sci. 390, 260 (2016)

    ADS  Google Scholar 

  34. R.-T. Wen, L.-S. Wang, H.-Z. Guo, Y. Chen, G.-H. Yue, D.-L. Peng, T. Hihara, K. Sumiyama, Mater. Chem. Phys. 130, 823 (2011)

    Google Scholar 

  35. S. K. Tripathi, C. Kaur, R. Kaur, and J. Kaur, in (Longowal, India, 2015), p. 030013

  36. M. Ramzan, A.M. Rana, E. Ahmed, M.F. Wasiq, A.S. Bhatti, M. Hafeez, A. Ali, M.Y. Nadeem, Mater. Sci. Semicond. Process. 32, 22 (2015)

    Google Scholar 

  37. M.S. Ghamsari, M.R. Gaeeni, W. Han, H.-H. Park, Mat. Express 7, 72 (2017)

    Google Scholar 

  38. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, M. Koike, Appl. Phys. Lett. 69, 3537 (1996)

    ADS  Google Scholar 

  39. J.C. Garcia, N.A. Deskins, J. Phys. Chem. C 116, 16573 (2012)

    Google Scholar 

  40. M.D.K. Jones, J.A. Dawson, S. Campbell, V. Barrioz, L.D. Whalley, Y. Qu, Front. Chem. 10, 920676 (2022)

    Google Scholar 

  41. A. Echresh, C.O. Chey, M. Zargar Shoushtari, V. Khranovskyy, O. Nur, M. Willander, J. Alloys Compd. 632, 165 (2015)

    Google Scholar 

  42. R. Marquardt, F. Zahari, J. Carstensen, G. Popkirov, O. Gronenberg, G. Kolhatkar, H. Kohlstedt, M. Ziegler, Adv. Elect. Mater. 9, 2201227 (2023)

    Google Scholar 

  43. D.R. Lambada, S. Yang, Y. Wang, P. Ji, S. Shafique, F. Wang, Nanomanuf Metrol 3, 269 (2020)

    Google Scholar 

  44. O. Pakma, Int. J. Photoenergy 2012, 1 (2012)

    Google Scholar 

  45. S. Monaghan, P.K. Hurley, K. Cherkaoui, M.A. Negara, A. Schenk, Solid-State Electron. 53, 438 (2009)

    ADS  Google Scholar 

  46. Ph.N. Meitei, N.K. Singh, A.C.S. Appl, Electron. Mater. 5, 1521 (2023)

    Google Scholar 

  47. Ph.N. Meitei, M.W. Alam, C. Ngangbam, N.K. Singh, Appl. Nanosci. 11, 1437 (2021)

    ADS  Google Scholar 

  48. P. Chetri, J.C. Dhar, IEEE Electron. Device Lett. 43, 72 (2022)

    ADS  Google Scholar 

  49. R. Balakarthikeyan, A. Santhanam, R. Anandhi, S. Vinoth, A.M. Al-Baradi, Z.A. Alrowaili, M.S. Al-Buriahi, K. Deva Arun Kumar, Opt. Mater. 120, 111387 (2021)

    Google Scholar 

  50. C.-F. Liu, X.-G. Tang, X.-B. Guo, Q.-X. Liu, Y.-P. Jiang, Z.-H. Tang, and W.-H. Li, Mater. Design 7 (2020)

  51. Z. Long, X. Xu, W. Yang, M. Hu, D.V. Shtansky, D. Golberg, X. Fang, Adv. Electron. Mater. 6, 1901048 (2020)

    Google Scholar 

  52. P. Gu, X. Zhu, D. Yang, Appl. Phys. A 125, 50 (2019)

    ADS  Google Scholar 

  53. B. Cook, Q. Liu, J. Butler, K. Smith, K. Shi, D. Ewing, M. Casper, A. Stramel, A. Elliot, J. Wu, A.C.S. Appl, Mater. Interfaces 10, 873 (2018)

    Google Scholar 

  54. H.-Y. Liu, G.-J. Liu, IEEE Sensors J. 18, 9955 (2018)

    ADS  Google Scholar 

  55. S. Panigrahy, J.C. Dhar, IEEE Trans. Nanotechnol. 17, 1189 (2018)

    ADS  Google Scholar 

  56. G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, and S. Jit, IEEE Trans. Nanotechnol. 1 (2016)

  57. P.-C. Chen, C.-H. Chen, C.-M. Tsai, C.-F. Cheng, S.-L. Wu, Surf. Coat. Technol. 231, 328 (2013)

    Google Scholar 

Download references

Acknowledgements

We acknowledge NIT Nagaland for IV measurement, XRD analysis, financial support and NIT Durgapur for FESEM characterization. Also, the authors would like to acknowledge the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. GRANT3811] for their support.

Author information

Authors and Affiliations

Authors

Contributions

BM did the primary literature review. BM and NKS did the deposition and results analysis like XRD, SEM, and IV analysis. The Absorption measurement and analysis was done by MWA. Finally, all the authors were involved in the preparation of the manuscript. The finalized manuscript was read and approved by all the authors.

Corresponding author

Correspondence to Naorem Khelchand Singh.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moirangthem, B., Alam, M.W. & Singh, N.K. Fast switching photodetector based on HfO2 thin film deposited using electron beam evaporation technique. Appl. Phys. A 129, 622 (2023). https://doi.org/10.1007/s00339-023-06907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06907-4

Keywords

Navigation