Skip to main content
Log in

An ab initio modelling for pristine and defect-induced emissions from NaCe(WO4)2: a potential material for solid-state lighting application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tetragonal NaCe(WO4)2 with oxygen vacancy has been successfully synthesised by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal technique. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, etc. have been employed for detailed structural analysis, whilst oxygen vacancies, explored by Raman, FTIR and X-ray photoelectron spectroscopies, lead to distorted CeO8 dodecahedra (c.a. CeO7 and CeO6). It has been observed from photoluminescence spectra that the synthesised samples exhibit intense emission at 435 nm due to 5d–4f transition of Ce3+ within CeO8 dodecahedra, whilst emission at 485 nm is assigned for same transition within CeO7. CeO6 provides two emissions at 451 and 520 nm. Herein, we have identified that CTAB plays an important role in the formation of CeO7 and CeO6. In contrast to earlier ethylene-diamine–tetra-acetic acid-assisted NaCe(WO4)2 with predominant green emission, our samples exhibit strong violet emission indicating less formation of CeO7 and CeO6 by CTAB. Herein, our ab initio calculation using density functional theory reveals that valence and conduction bands comprise O 2p and O 2p–Ce 5d orbitals, respectively, whilst Ce 5dz2 and 5dyz, 5dxz orbitals mostly facilitate 5d–4f transition within CeO7 and CeO6. Commission Internationale de l'Elcairage coordinates are found in violet region with correlated colour temperature ~ 6491 K indicating that CTAB-assisted hydrothermally synthesised NaCe(WO4)2 can be a potential material for cold solid-state lighting application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Zhu, Y. Liang, M. Zhang, M. Tong, G. Li, S. Wang, RSC Adv. 5, 98350–98360 (2015)

    ADS  Google Scholar 

  2. X. Zhang, J. Wu, P. Wang, J. Gao, F. Gao, D. Gao, Dalton Trans. 50, 7826–7834 (2021)

    Google Scholar 

  3. A.K. Munirathnappa, V.C. Petwal, J. Dwivedi, N.G. Sundaram, New J. Chem. 42, 2726–2732 (2018)

    Google Scholar 

  4. A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S.V. Eliseeva, J.C.G. Bünzli, P. Pattison, Chem. Sci. 3, 384–390 (2012)

    Google Scholar 

  5. N. Dirany, M. Arab, A. Moreau, J.C. Valmalette, J.R. Gavarri, Cryst. Eng. Commun. 18, 6579–6593 (2016)

    Google Scholar 

  6. T. Shimemura, N. Sawaguchi, M. Sasaki, J. Ceram. Soc. Jpn. 125, 150–154 (2017)

    Google Scholar 

  7. A.K. Munirathnappa, J.C. Neuefeind, P. Yanda, A. Sundaresan, I.V. Kityk, K. Ozga, J. Jedryka, A. Rao, N.G. Sundaram, Cryst. Growth Des. 19, 6082–6091 (2019)

    Google Scholar 

  8. X. Yang, Z. Fu, G. Liu, C. Zhang, Y. Wei, Z. Wu, T. Sheng, RSC Adv. 5, 70220–70228 (2015)

    ADS  Google Scholar 

  9. R.F. Gonçalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L.V. Rosa, A.P.A. Marques, Cryst. Eng. Commun. 17, 1654–1666 (2015)

    Google Scholar 

  10. A.K. Munirathnappa, A.K. Sinha, N.G. Sundaram, Cryst. Growth Des. 18, 253–263 (2018)

    Google Scholar 

  11. W.R. Liu, C.W. Yeh, C.H. Huang, C.C. Lin, Y.C. Chiu, Y.T. Yeh, R.S. Liu, J. Mater. Chem. 21, 3740–3744 (2011)

    Google Scholar 

  12. L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida, A.C. Rabelo, I.C. Nogueira, N.C. Batista, J.A. Varela, M.R.M.C. Santos, E. Longo, E.M.S. Li, RSC Adv. 2, 6438–6454 (2012)

    ADS  Google Scholar 

  13. G.M. Kuzmicheva, A.V. Eremin, V.B. Rybakov, K.A. Subbotin, E.V. Zharikov, Russ. J. Inorg. Chem. 54, 854–863 (2009)

    Google Scholar 

  14. R.L. Andrews, A.M. Heyns, P.M. Woodward, Dalton Trans. 44, 10700–10707 (2015)

    Google Scholar 

  15. L. Li, Y. Su, G. Li, Appl. Phys. Lett. 90, 054105 (2007)

    ADS  Google Scholar 

  16. G.M. Kuz’Micheva, I.A. Kaurova, V.B. Rybakov, P.A. Eistrikh-Geller, E.V. Zharikov, D.A. Lis, K.A. Subbotin, Cryst. Eng. Commun. 18, 2921–2928 (2016)

    Google Scholar 

  17. R.K. Pushpendra, S.N. Kunchala, B.S. Achary, Naidu. ACS Appl. Nano Mater. 2, 5527–5537 (2019)

    Google Scholar 

  18. F. Esteban-Betegón, C. Zaldo, C. Cascales, Chem. Mater. 22, 2315–2324 (2010)

    Google Scholar 

  19. S. Basu, B.S. Naidu, B. Viswanadh, V. Sudarsan, S.N. Jha, D. Bhattacharyya, R.K. Vatsa, Rsc Adv. 4, 15606–15612 (2014)

    ADS  Google Scholar 

  20. W.G. Fateley, Krieger Publishing Company 1972.

  21. J.A. Horsley, I.E. Wachs, J.M. Brown, G.H. Via, F.D. Hardcastle, J. Phys. Chem. 91, 4014–4020 (1987)

    Google Scholar 

  22. Z. Xu, P. Du, Q. Zhu, X. Li, X. Sun, J.G. Li, Dalton Trans. 50, 17703–17715 (2021)

    Google Scholar 

  23. D. Errandonea, J. Pellicer-Porres, M.C. Pujol, J.J. Carvajal, M. Aguiló, J. Alloys Compd. 638, 14–20 (2015)

    Google Scholar 

  24. J. Hanuza, L. Macalik, Spectrochim. Acta Part A Mol. Spec. 43, 361–373 (1987)

    ADS  Google Scholar 

  25. B.P. Singh, R.A. Singh, New J. Chem. 39, 4494–4507 (2015)

    Google Scholar 

  26. F.F. Wu, D. Zhou, C. Du, S.K. Sun, L.X. Pang, B.B. Jin, Z.M. Qi, J. Varghese, Q. Li, X.Q. Zhang, J. Mater. Chem. C 9, 9962–9971 (2021)

    Google Scholar 

  27. W. da Silva Pereira, M.M. Ferrer, G. Botelho, L. Gracia, I.C. Nogueira, I.M. Pinatti, I.L.V. Rosa, F.D.A. La Porta, J. Andres, E. Longo, Phys. Chem. Chem. Phys. 18, 21966–21975 (2016)

    Google Scholar 

  28. P. Botella, R. Lacomba-Perales, D. Errandonea, A. Polian, P. Rodriguez-Hernandez, A. Munoz, Inorg. Chem. 53, 9729–9738 (2014)

    Google Scholar 

  29. Y. Xiong, B. Wang, H. Zhuang, X. Jiang, G. Ma, Y. Yi, W. Hu, Y. Zhou, RSC Adv. 4, 36738–36741 (2014)

    ADS  Google Scholar 

  30. N. Dirany, E. McRae, M. Arab, Cryst. Eng. Commun. 19, 5008–5021 (2017)

    Google Scholar 

  31. S.D. Ramarao, V.R.K. Murthy, Dalton Trans. 44, 2311–2324 (2015)

    Google Scholar 

  32. C. Zhang, D. Guo, W. Xu, C. Hu, Y. Chen, J. Phys. Chem. C 120, 12218–12225 (2016)

    Google Scholar 

  33. S. Mandal, C.K. Ghosh, D. Sarkar, U.N. Maiti, K.K. Chattopadhyay, Solid State Sci. 12, 1803–1808 (2010)

    ADS  Google Scholar 

  34. M. Anicete-Santos, E. Orhan, M.A.M.A. De Maurera, L.G.P. Simoes, A.G. Souza, P.S. Pizani, E.R. Leite, J.A. Varela, J. Andrés, A. Beltrán, E. Longo, Phys. Rev. B 75, 165105 (2007)

    ADS  Google Scholar 

  35. G. Li, Y. Tian, Y. Zhao, J. Lin, Chem. Soc. Rev. 44, 8688–8713 (2015)

    Google Scholar 

  36. T. Shimemura, N. Sawaguchi, M. Sasaki, J. Ceram. Soc. of Japan 124, 938–942 (2016)

    Google Scholar 

  37. P. Dorenbos, ECS J. Solid State Sci. Technol. 2, 3001–3011 (2013)

    Google Scholar 

  38. M.V. Korzhik, V.B. Pavlenko, T.N. Timoschenko, V.A. Katchanov, A.V. Singovskii, A.N. Annenkov, V.A. Ligun, I.M. Solskii, J.P. Peigneux, Phys. Status Solidi A 154, 779–788 (1996)

    ADS  Google Scholar 

  39. E.V. Sokolenko, V.M. Zhukovskii, E.S. Buyanova, Y.A. Krasnobaev, Inorg. Mater. 34, 499–502 (1998)

    Google Scholar 

  40. B.M. Sinel’nikov, E.V. Sokolenko, V. Zvekov, Inorg. Mater. 32, 999–1001 (1996)

    Google Scholar 

  41. A. Lecointre, A. Bessière, A.J.J. Bos, P. Dorenbos, B. Viana, S. Jacquart, J. Phys. Chem. C 115, 4217–4227 (2011)

    Google Scholar 

  42. X. Mi, J. Sun, P. Zhou, H. Zhou, D. Song, K. Li, M. Shang, J. Lin, J. Mater. Chem. C 3, 4471–4481 (2015)

    Google Scholar 

  43. M. Li, J. Zhang, J. Han, Z. Qiu, W. Zhou, L. Yu, Z. Li, S. Lian, Inorg. Chem. 56, 241–251 (2017)

    Google Scholar 

  44. M. Yu, B. Wang, Y.G. Liu, L. Wang, Y. Xia, Z. Huang, M. Fang, IOP Conf. Ser. Mater. Sci. Eng. 678, 012085 (2019)

    Google Scholar 

  45. X. Wang, Y. Wang, J. Phys. Chem. C 119, 16208–16214 (2015)

    Google Scholar 

  46. W.Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H.S. Sheu, T.S. Chan, C.Y. Chiang, W. Zhou, R.S. Liu, Chem. Mater. 26, 2075–2085 (2014)

    Google Scholar 

  47. S. Das, C.K. Ghosh, R. Dey, M. Pal, RSC Adv. 6, 236–244 (2016)

    ADS  Google Scholar 

  48. X. Yu, Y. Jiang, X. Li, Z. Song, X. Zhang, H. Liu, B. Zhao, T. Ye, L. Duan, J. Fan, Cryst. Eng. Commun. 24, 805–817 (2022)

    Google Scholar 

Download references

Acknowledgements

One of the authors (NH) thanks UGC, Govt. of India, whilst other author (TM) thanks CSIR, Govt. of India, for financial support during execution of their work. NH and TM have equal contribution to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Kumar Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 789 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, N., Mondal, T., Dutta, A. et al. An ab initio modelling for pristine and defect-induced emissions from NaCe(WO4)2: a potential material for solid-state lighting application. Appl. Phys. A 129, 708 (2023). https://doi.org/10.1007/s00339-023-06898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06898-2

Keywords

Navigation