Skip to main content
Log in

Tunable emission properties of star-shaped ZnO-ZnS-SiO2 composites synthesized by ultrasound-assisted Stöber method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO-ZnS-SiO2 composites were synthesized by an ultrasound-assisted Stöber method. The incorporation of blue-emitting ZnS on the surface of ZnO particles allowed the fabrication of a composite material with tunable emission. SEM pictures revealed star-shaped ZnO structures with a size about of 1 µm in length with multiple spindles. The composition of the materials was confirmed by EDS, FT-IR, and Raman spectroscopies. X-ray diffraction pattern analysis revealed that ZnO and ZnS have hexagonal wurtzite and cubic sphalerite crystal structures, respectively. The estimated band gap values of ZnS, ZnO, as well as the composites were 3.61, 3.13 and 3.21 eV, respectively. The emission spectrum of star-shaped ZnO exhibits a weak excitonic signal and a second intense and broad band centered around 620 nm. Photoluminescence analysis of the composites revealed a very broad emission band covering almost entirely the visible region of the spectrum and whose emission color ranges from orange to blue region of the CIE1931 chromaticity space, as the content of ZnS in the composite increases. Moreover, this tuning of the luminescence allows the generation of white light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, A.H. Morkoç, J. Appl. Phys. 98(4), 11 (2005). https://doi.org/10.1063/1.1992666

    Article  Google Scholar 

  2. E. Golovanov, V. Kolesov, V. Anisimkin, V. Osipenko, I. Kuznetsova, Coatings 12(5), 709 (2022). https://doi.org/10.3390/coatings12050709

    Article  Google Scholar 

  3. M.J. Kim et al., Small 19(2), 2200712 (2023). https://doi.org/10.1002/smll.202200712

    Article  Google Scholar 

  4. M. Dolatyari, A. Rostami, Sci. Rep. 12(1), 19934 (2022). https://doi.org/10.1038/s41598-022-24540-8

    Article  ADS  Google Scholar 

  5. M. Podia, A.K. Tripathi, J. Lumin. 252, 119331 (2022). https://doi.org/10.1016/j.jlumin.2022.119331

    Article  Google Scholar 

  6. Z. Yang, Z. Ye, Z. Xu, B. Zhao, Phys. E Low Dimens. Syst. Nanostruct. 42, 116 (2009). https://doi.org/10.1016/j.physe.2009.09.010

    Article  ADS  Google Scholar 

  7. Y. Li, W. Shen, Sci. China Chem. 55, 2485 (2012). https://doi.org/10.1007/s11426-012-4565-2

    Article  Google Scholar 

  8. N.S.M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, M. Ashokkumar, Ultrason. Sonochem. 29, 568–576 (2016). https://doi.org/10.1016/j.ultsonch.2015.06.013

    Article  Google Scholar 

  9. A.K. Zak, W.H. Abd Majid, H.Z. Wang, R. Yousefi, A.M. Golsheikh, Z.F. Ren, Ultrason. Sonochem. 20(1), 395–400 (2013). https://doi.org/10.1016/j.ultsonch.2012.07.001

    Article  Google Scholar 

  10. N.M. Flores, U. Pal, R. Galeazzi, A. Sandoval, RSC Adv. 4(77), 41099–41110 (2014). https://doi.org/10.1039/c4ra04522j

    Article  ADS  Google Scholar 

  11. C.B. Tay, S.J. Chua, K.P. Loh, J. Cryst. Growth 311(5), 1278–1284 (2009). https://doi.org/10.1016/j.jcrysgro.2008.12.053

    Article  ADS  Google Scholar 

  12. R. Manohar, T. Vimal, D.P. Singh, K. Agrahari, A. Srivastava, Photon. Lett. Poland (2016). https://doi.org/10.4302/plp.2016.1.09

    Article  Google Scholar 

  13. G. Saavedra Rodríguez, R.C. Carrillo Torres, R. Sánchez Zeferino, M.E. Álvarez Ramos, Opt. Mater. 89, 396 (2019). https://doi.org/10.1016/j.optmat.2019.01.057

    Article  ADS  Google Scholar 

  14. S.I. Sadovnikov, Russ. Chem. Rev. 88, 571 (2019). https://doi.org/10.1070/RCR4867

    Article  ADS  Google Scholar 

  15. K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Appl. Phys. Lett. 84, 284 (2004). https://doi.org/10.1063/1.1639935

    Article  ADS  Google Scholar 

  16. N. Baig, I. Kammakakam, W. Falath, Mater. Adv. 2, 1821 (2021). https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  17. E. Omanović-Mikličanin, A. Badnjević, A. Kazlagić, M. Hajlovac, Health Technol. 10, 51 (2020). https://doi.org/10.1007/s12553-019-00380-x

    Article  Google Scholar 

  18. H. Wei, H. Xu, Mater. Today 17, 372 (2014). https://doi.org/10.1016/j.mattod.2014.05.012

    Article  Google Scholar 

  19. F. Montanarella, T. Altantzis, D. Zanaga, F.T. Rabouw, S. Bals, P. Baesjou, D. Vanmaekelbergh, A. van Blaaderen, ACS Nano 11, 9136 (2017). https://doi.org/10.1021/acsnano.7b03975

    Article  Google Scholar 

  20. A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnology 18, 095702 (2007). https://doi.org/10.1088/0957-4484/18/9/095702

    Article  ADS  Google Scholar 

  21. F. Li, X. Liu, T. Kong, Z. Li, X. Huang, Cryst. Res. Technol. 44, 402 (2009). https://doi.org/10.1002/crat.200800574

    Article  Google Scholar 

  22. Y. Cheng, R. Chen, H. Feng, W. Hao, H. Xu, Y. Wang, J. Li, Phys. Chem. Chem. Phys. 16, 4544 (2014). https://doi.org/10.1039/C3CP54830A

    Article  Google Scholar 

  23. D.Q. Trung, M.T. Tran, N.D. Hung, Q.N. Van, N.T. Huyen, N. Tu, H.P. Thanh, Opt. Mater. 121, 111587 (2021). https://doi.org/10.1016/j.optmat.2021.111587

    Article  Google Scholar 

  24. E.B. Chubenko, A.V. Baglov, M.S. Leanenia, B.D. Urmanov, V.E. Borisenko, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 267, 115109 (2021). https://doi.org/10.1016/j.mseb.2021.115109

    Article  Google Scholar 

  25. P. Kumbhakar, S. Biswas, C.S. Tiwary, P. Kumbhakar, J. Appl. Phys. 121, 144301 (2017). https://doi.org/10.1063/1.4980011

    Article  ADS  Google Scholar 

  26. J.L. Montaño-Priede, J.P. Coelho, A. Guerrero-Martínez, O. Peña-Rodríguez, U. Pal, J. Phys. Chem. C Nanomater. Interfaces 121, 9543 (2017). https://doi.org/10.1021/acs.jpcc.7b00933

    Article  Google Scholar 

  27. J. Zhang, Sun, Yin, Su, Liao, Yan, Chem. Mater. 14, 4172 (2002). https://doi.org/10.1021/cm020077h

    Article  Google Scholar 

  28. S. Cho, S.-H. Jung, K.-H. Lee, J. Phys. Chem. C Nanomater. Interfaces 112, 12769 (2008). https://doi.org/10.1021/jp803783s

    Article  Google Scholar 

  29. D. Krishnan, T. Pradeep, J. Cryst. Growth 311, 3889 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.019

    Article  ADS  Google Scholar 

  30. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A. Li Bassi, J. Appl. Phys. 115, 073508 (2014). https://doi.org/10.1063/1.4866322

    Article  ADS  Google Scholar 

  31. M. Arif, S. Monga, A. Sanger, P.M. Vilarinho, A. Singh, Vacuum 155, 662 (2018). https://doi.org/10.1016/j.vacuum.2018.04.052

    Article  ADS  Google Scholar 

  32. R.F. Zhuo, H.T. Feng, Q. Liang, J.Z. Liu, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, S. Cheng, B.S. Geng, X.Y. Xu, J. Wang, Z.G. Wu, P.X. Yan, G.H. Yue, J. Phys. D Appl. Phys. 41, 185405 (2008). https://doi.org/10.1088/0022-3727/41/18/185405

    Article  ADS  Google Scholar 

  33. J.I. Necochea-Chamorro, R.C. Carrillo-Torres, R. Sánchez-Zeferino, M.E. Álvarez-Ramos, Opt. Fiber Technol. 52, 101982 (2019). https://doi.org/10.1016/j.yofte.2019.101982

    Article  Google Scholar 

  34. Y.Q. Wang, Y.G. Wang, L. Cao, Z.X. Cao, Appl. Phys. Lett. 83, 3474 (2003). https://doi.org/10.1063/1.1621462

    Article  ADS  Google Scholar 

  35. N. Ben Moussa, M. Lajnef, N. Jebari, C. Villebasse, F. Bayle, J. Chaste, A. Madouri, R. Chtourou, E. Herth, RSC Adv. 11, 22723 (2021). https://doi.org/10.1039/D1RA02241E

    Article  ADS  Google Scholar 

  36. A. Grill, D.A. Neumayer, J. Appl. Phys. 94, 6697 (2003). https://doi.org/10.1063/1.1618358

    Article  ADS  Google Scholar 

  37. E. San Andrés, A. del Prado, I. Mártil, G. González-Dıaz, D. Bravo, F.J. López, M. Fernández, W. Bohne, J. Röhrich, B. Selle, I. Sieber, J. Appl. Phys. 94, 7462 (2003). https://doi.org/10.1063/1.1626798

    Article  ADS  Google Scholar 

  38. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche. Z. Techn. Physik 12, 593 (1931)

    Google Scholar 

  39. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 024317 (2007). https://doi.org/10.1063/1.2424538

    Article  ADS  Google Scholar 

  40. D. Meroni, C. Gasparini, A. Di Michele, S. Ardizzone, C.L. Bianchi, Ultrason. Sonochem. 66, 105119 (2020). https://doi.org/10.1016/j.ultsonch.2020.105119

    Article  Google Scholar 

  41. K. Davis, R. Yarbrough, M. Froeschle, J. White, H. Rathnayake, RSC Adv. 9, 14638 (2019). https://doi.org/10.1039/C9RA02091H

    Article  ADS  Google Scholar 

  42. J.-H. Zhao, C.-J. Liu, Z.-H. Lv, Optik 127, 1421 (2016). https://doi.org/10.1016/j.ijleo.2015.11.018

    Article  ADS  Google Scholar 

  43. R. Raji, K.G. Gopchandran, J. Sci. Adv. Mater. Devices 2, 51 (2017). https://doi.org/10.1016/j.jsamd.2017.02.002

    Article  Google Scholar 

  44. S. Agarwal, L.K. Jangir, K.S. Rathore, M. Kumar, K. Awasthi, Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-019-2852-x

    Article  Google Scholar 

  45. K. Lim, M.A. Abdul Hamid, R. Shamsudin, N.H. Al-Hardan, I. Mansor, W. Chiu, Materials (2016). https://doi.org/10.3390/ma9040300

    Article  Google Scholar 

  46. T. Kryshtab, V.S. Khomchenko, J.A. Andraca-Adame, A.K. Savin, A. Kryvko, G. Juárez, R. Peña-Sierra, J. Lumin. 129, 1677 (2009). https://doi.org/10.1016/j.jlumin.2009.04.069

    Article  Google Scholar 

  47. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, J. Lumin. 145, 244 (2014). https://doi.org/10.1007/s10895-019-02434-9

    Article  Google Scholar 

  48. M. Zahiri, M. Shafiee Afarani, A.M. Arabi, J. Fluoresc. 29, 1227 (2019). https://doi.org/10.1007/s10895-019-02434-9

    Article  Google Scholar 

  49. A. Zazueta-Raynaud, A. Cordova-Rubio, R. Lopez-Delgado, J. E. Pelayo-Ceja, R. C. Carrillo-Torres, R. Sanchez-Zeferino, M. E. Alvarez-Ramos, and A. Ayon, in 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP) (IEEE, 2019). https://doi.org/10.1109/DTIP.2019.8752671

  50. C.S. McCamy, Color Res. Appl. 17, 142 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  51. X. Wang, Z. Zhao, Q. Wu, C. Wang, Q. Wang, L. Yanyan, Y. Wang, J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 8795 (2016). https://doi.org/10.1039/C6TC01049K

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of Dr. Francisco Brown Bojórquez from the Departamento de Investigación en Polímeros y Materiales (Universidad de Sonora) to carry out the powder X-ray diffraction measurements.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FF-D, RCC-T, RS-Z and MEÁ-R. The first draft of the manuscript was written by FF-D and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. E. Álvarez-Ramos.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Félix-Domínguez, F., Carrillo-Torres, R.C., Sánchez-Zeferino, R. et al. Tunable emission properties of star-shaped ZnO-ZnS-SiO2 composites synthesized by ultrasound-assisted Stöber method. Appl. Phys. A 129, 635 (2023). https://doi.org/10.1007/s00339-023-06895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06895-5

Keywords

Navigation