Skip to main content

Advertisement

Log in

Bi(Li1/2Nb1/2)O3 addition inducing improved energy storage performance in lead-free BCZT ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BCZT ceramics are considered to be a promising material due to the presence of its morphotropic phase boundary (MPB). However, most of the research on this material is focused on piezoelectric properties, and there is still a lack of research on energy storage properties. Here, a component represented as BiMeO3 [Me = (Li1/2Nb1/2)3+] with a similar structure as BCZT was introduced into ceramics to improve the energy storage properties. The phase composition changes, relaxation behavior, and energy storage properties of the samples were carefully investigated. The improved relative densities brought about by the introduction facilitate the increase in bulk resistance, thus increasing the break-down field strength. Due to the addition of BLN, the Curie temperature drops substantially below room temperature. Under the influence of phase composition and polar nano-regions (PNRs), BCZT ceramics exhibit slim hysteresis loops. In BCZT‒0.12BLN, the recoverable energy density can reach 2.06 J/cm3 and efficiency can stay in 80.5% at the same time. This proposed BCZT ceramic still has great research potential as an energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data can be available from the corresponding author upon academic reasonable request.

References

  1. S. Shi, H. Hashimoto, T. Sekino, Ceram. Int. 47, 3272–3278 (2021)

    Google Scholar 

  2. Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, J. Alloys Compd. 794, 542–552 (2019)

    Google Scholar 

  3. S.B. Li, C.B. Wang, L. Li, Q. Shen, L.M. Zhang, J. Alloys Compd. 730, 182–190 (2018)

    Google Scholar 

  4. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    ADS  Google Scholar 

  5. R.L. Nayak, Y. Zhang, S.S. Dash, M.P.K. Sahoo, Ceram. Int. 48, 10803–10816 (2022)

    Google Scholar 

  6. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    Google Scholar 

  7. Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146–18153 (2015)

    Google Scholar 

  8. W.-B. Li, D. Zhou, W.-F. Liu, J.-Z. Su, F. Hussain, D.-W. Wang, G. Wang, Z.-L. Lu, Q.-P. Wang, Chem. Eng. J. 414, 128760 (2021)

    Google Scholar 

  9. W.-B. Li, D. Zhou, L.-X. Pang, R. Xu, H.-H. Guo, J. Mater. Chem. A 5, 19607–19612 (2017)

    Google Scholar 

  10. Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, J. Mater. Chem. C 5, 9552–9558 (2017)

    Google Scholar 

  11. F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng, J. Eur. Ceram. Soc. 38, 4646–4652 (2018)

    Google Scholar 

  12. Y. Qiu, Y. Lin, X. Liu, H. Yang, J. Alloys Compd. 797, 348–355 (2019)

    Google Scholar 

  13. H. Wang, Q. Hu, X. Liu, Q. Zheng, N. Jiang, Y. Yang, K.W. Kwok, C. Xu, D. Lin, Ceram. Int. 45, 23233–23240 (2019)

    Google Scholar 

  14. M. Zhang, H. Yang, Y. Lin, Q. Yuan, H. Du, Energy Storage Mater. 45, 861–868 (2022)

    Google Scholar 

  15. Z. Sun, L. Li, S. Yu, X. Kang, S. Chen, Dalton Trans. 46, 14341–14347 (2017)

    Google Scholar 

  16. X. Ji, C. Wang, S. Li, S. Zhang, R. Tu, Q. Shen, J. Shi, L. Zhang, J. Mater. Sci. Mater. Electron. 29, 7592–7599 (2018)

    Google Scholar 

  17. X. Ji, C. Wang, S. Zhang, R. Tu, Q. Shen, J. Shi, L. Zhang, J. Mater. Sci. Mater. Electron. 30, 12197–12203 (2019)

    Google Scholar 

  18. Q. Zhang, W. Cai, C. Zhou, R. Xu, S. Zhang, Z. Li, R. Gao, C. Fu, Appl. Phys. A Mater. Sci. Process. 125, 759 (2019)

    ADS  Google Scholar 

  19. S. Merselmiz, Z. Hanani, D. Mezzane, A.G. Razumnaya, M. Amjoud, L. Hajji, S. Terenchuk, B. Rozic, I.A. Luk’yanchuk, Z. Kutnjak, RSC Adv. 11, 9459–9468 (2021)

    ADS  Google Scholar 

  20. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, Acta Mater. 155, 331–342 (2018)

    ADS  Google Scholar 

  21. P. Chen, W. Cao, T. Li, B. Zhao, J. Zheng, C. Wang, Chem. Eng. J. 435, 135065 (2022)

    Google Scholar 

  22. S.N. Borkar, P. Aggarwal, V.K. Deshpande, Curr. Appl. Phys. 39, 205–213 (2022)

    ADS  Google Scholar 

  23. W.-G. Yang, B.-P. Zhang, N. Ma, L. Zhao, J. Eur. Ceram. Soc. 32, 899–904 (2012)

    Google Scholar 

  24. M. Fu, C. Li, B. Yang, D. Liu, L. Bian, Y. Hong, C. Zhang, C. Chen, J. Lin, J. Mater. Sci. Mater. Electron. 30, 18950–18958 (2019)

    Google Scholar 

  25. Y. Yao, Y. Li, N. Sun, J. Du, X. Li, L. Zhang, Q. Zhang, X. Hao, Ceram. Int. 44, 5961–5966 (2018)

    Google Scholar 

  26. J. Wan, Y. Pu, C. Hui, C. Cui, Y. Guo, J. Mater. Sci. Mater. Electron. 29, 5158–5162 (2018)

    Google Scholar 

  27. C.-Q. Wang, C. Shu, D.-Y. Zheng, S. Luo, J. Mater. Sci. Mater. Electron. 33, 3822–3834 (2022)

    Google Scholar 

  28. S.Y. Chen, R. Liu, Y.P. Zheng, Y.J. Shi, S.T. Dang, Y.C. Shi, F. Yang, J.H. Li, L.F. He, S.J. Wu, X.F. Li, Y.C. Hu, J. Shang, S.Q. Yin, X.W. Wang, J. Alloys Compd. 936, 168015 (2023)

    Google Scholar 

  29. Y.P. Zheng, Y.C. Shi, Z.Y. Ren, B.H. Zhang, J. Feng, H.N. Li, S.T. Dang, F. Yang, J. Shang, S.Q. Yin, Y.C. Hu, Z.Y. Gao, X.W. Wang, Phys. B Condens. Matter 643, 414140 (2022)

    Google Scholar 

  30. A. Chawla, S. Verma, S. Godara, G.R. Bhadu, A. Singh, M. Singh, J. Electron. Mater. 49, 4111–4122 (2020)

    ADS  Google Scholar 

  31. D. Li, Y. Lin, Q. Yuan, M. Zhang, L. Ma, H. Yang, J. Materiomics 6, 743–750 (2020)

    Google Scholar 

  32. D. Han, C. Wang, Z. Zeng, X. Wei, P. Wang, Q. Liu, D. Wang, F. Meng, J. Alloys Compd. 902, 163721 (2022)

    Google Scholar 

  33. M. Zhou, R. Liang, Z. Zhou, X. Dong, Ceram. Int. 45, 3582–3590 (2019)

    Google Scholar 

  34. Q. Jin, Y.-P. Pu, C. Wang, Z.-Y. Gao, H.-Y. Zheng, Ceram. Int. 43, S232–S238 (2017)

    Google Scholar 

  35. Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, J. Alloys Compd. 775, 116–123 (2019)

    Google Scholar 

  36. H. Yang, F. Yan, Y. Lin, T. Wang, L. He, F. Wang, J. Alloys Compd. 710, 436–445 (2017)

    Google Scholar 

  37. Z. Hanani, D. Mezzane, M.B. Amjoud, Y. Gagou, K. Hoummada, C. Perrin, A.G. Razumnaya, Z. Kutnjak, A. Bouzina, M.E. Marssi, M. Gouné, B. Rožič, J. Mater. Sci. Mater. Electron. 31, 10096–10104 (2020)

    Google Scholar 

  38. X.W. Wang, B.H. Zhang, Y.Y. Li, Y.C. Shi, L.Y. Sun, G. Feng, C.L. Li, Y.F. Liang, Y.P. Zheng, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, J. Mater. Sci. Mater. Electron. 31, 4732–4742 (2020)

    Google Scholar 

  39. X. Zhu, P. Shi, Y. Gao, R. Kang, J. Zhao, A. Xiao, W. Qiao, J. Zhao, Z. Wang, X. Lou, Chem. Eng. J. 437, 135462 (2022)

    Google Scholar 

  40. F. Chen, Q.-X. Liu, X.-G. Tang, Y.-P. Jiang, J.-L. Yue, J.-K. Li, Phys. B Condens. Matter 496, 20–25 (2016)

    ADS  Google Scholar 

  41. J. Xie, H. Hao, H. Liu, Z. Yao, Z. Song, L. Zhang, Q. Xu, J. Dai, M. Cao, Ceram. Int. 42, 12796–12801 (2016)

    Google Scholar 

  42. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, J. Appl. Phys. 127, 074103 (2020)

    ADS  Google Scholar 

  43. S.T. Dang, L.L. Xue, L.F. He, Y.C. Shi, H.N. Li, Y.C. Hu, J. Shang, S.Q. Yin, X.W. Wang, J. Mater. Sci. Mater. Electron. 33, 26100–26112 (2022)

    Google Scholar 

  44. C. Luo, C. Zhu, Y. Liang, P. Zheng, W. Bai, L. Li, F. Wen, J. Zhang, L. Zheng, Y. Zhang, A.C.S. Appl, Electron. Mater. 4, 452–460 (2021)

    ADS  Google Scholar 

  45. D. Li, X. Zeng, Z. Li, Z.-Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, J. Adv. Ceram. 10, 675–703 (2021)

    Google Scholar 

  46. D. Li, Y. Lin, M. Zhang, H. Yang, Chem. Eng. J. 392, 123729 (2020)

    Google Scholar 

  47. Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, A.C.S. Appl, Mater. Interfaces 11, 36824–36830 (2019)

    Google Scholar 

  48. F. Yan, H. Bai, G. Ge, J. Lin, C. Shi, K. Zhu, B. Shen, J. Zhai, S. Zhang, Small 18, 2106515 (2022)

    Google Scholar 

  49. Y. You, X. Guo, J. Alloys Compd. 918, 165557 (2022)

    Google Scholar 

  50. S.Q. Yin, J. Feng, Y.P. Zheng, Z.Y. Ren, L.F. He, H.N. Li, F. Yang, S.T. Dang, S.Y. Chen, Y.C. Hu, J. Shang, X.W. Wang, Appl. Phys. A Mater. Sci. Process. 128, 991 (2022)

    ADS  Google Scholar 

  51. A. Ihyadn, S. Merselmiz, D. Mezzane, L. Bih, A. Lahmar, A. Alimoussa, M. Amjoud, I.A. Luk’yanchuk, M. El Marssi, J. Mater. Sci.: Mater. Electron. 34, 1051 (2023)

    Google Scholar 

  52. H.N. Li, J.H. Li, Y.C. Shi, B.H. Zhang, L. Lin, R. Liu, S.J. Wu, X.F. Li, J. Shang, Y.C. Hu, X.W. Wang, Appl. Phys. A Mater. Sci. Process. 129, 474 (2023)

    ADS  Google Scholar 

  53. S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak, J. Phys. Chem. Solids 177, 111302 (2023)

    Google Scholar 

  54. J. Kaarthik, C. Kaushiga, G. Sradha, N. Ram, S.G. Reddy, K.C. Sekhar, A. Venkateswarlu, J. Alloys Compd. 943, 169069 (2023)

    Google Scholar 

  55. A. Lakouader, H. Mezzourh, D. Mezzane, M.B. Amjoud, L. Hajji, E.H. Choukri, I.A. Luk’yanchuk, Z. Kutnjak, M. El Marssi, J. Mater. Sci. Mater. Electron. 33, 14381–14396 (2022)

    Google Scholar 

  56. R.L. Nayak, S.S. Dash, Y. Zhang, M.P.K. Sahoo, Ceram. Int. 47, 17220–17233 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province (21A140014 and 21B140005) and the Young Backbone Teachers Training Plan of Colleges and Universities in Henan Province (2020GGJS060 and 2020GGJS062).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the study. Resources, funding acquisition, and project administration are provided by YH. Material preparation was performed by SD, WZ, YZ, and PX. Data collection and analysis were completed by SD and JC. The first draft of the manuscript was written by SD. Review and editing was completed by XW and YH. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding authors

Correspondence to Y. C. Hu or X. W. Wang.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest, with any individual/organization for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y.C., Dang, S.T., Cao, J.Q. et al. Bi(Li1/2Nb1/2)O3 addition inducing improved energy storage performance in lead-free BCZT ceramics. Appl. Phys. A 129, 602 (2023). https://doi.org/10.1007/s00339-023-06879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06879-5

Keywords

Navigation