Skip to main content
Log in

Negative thermal quenching in optically pumped GaAsBi–GaAs heterojunction p–i–n diode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the electroluminescence (EL) properties of an optically pumped GaAsBi–GaAs heterojunction p–i–n diode. GaAsBi–GaAs quantum well excitonic transitions dominate the EL except at low temperatures, where the luminescence from Bi-induced localized states also influences the luminescence. When the diode is optically pumped, the EL exhibits negative thermal quenching, and for a certain range of optical pump powers, we obtained the room-temperature EL intensity higher than that at the lowest temperature (22 K). We explain this by considering the thermally induced tunneling of photo-generated carriers from the n+ and p+ regions into the GaAsBi QW in the i-region of the p–i–n diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available at reasonable request.

References

  1. S. Francoeur, M.J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, T. Tiedje, Band gap of GaAs1-xBix, 0 < x < 3.6%. Appl. Phys. Lett. 82(22), 3874–3876 (2003)

    ADS  Google Scholar 

  2. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)

    ADS  Google Scholar 

  3. S.P. Svensson, H. Hier, W.L. Sarney, D. Donetsky, D. Wang, G. Belenky, Molecular beam epitaxy control and photoluminescence properties of InAsBi. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30, 02109 (2012)

    Google Scholar 

  4. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, D.O. Scanlon, J. Buckeridge, T.S. Jones, M.J. Ashwin, T.D. Veal, Growth and properties of GaSbBi alloys. Appl. Phys. Lett. 103, 142106 (2013)

    ADS  Google Scholar 

  5. Z.L. Lan, X.Q. Zhang, G.W. Yang, J. Sun, F.J. Liu, H.Q. Huang, R. Zhang, P.G. Yin, L. Guo, Y.C. Song, Structural and optical characterization of ZnO thin films grown by plasma-assisted molecular beam epitaxy. Guang Pu Xue Yu Guang Pu Fen Xi/Spectros. Spectr. Anal. 28, 253–255 (2008)

    Google Scholar 

  6. A. Mascarenhas, R. Kini, Y. Zhang, R. France, A. Ptak, Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN. Phys. Status Solidi Basic Res. 246, 504–507 (2009)

    ADS  Google Scholar 

  7. J. Puustinen, M. Wu, E. Luna, A. Schramm, P. Laukkanen, M. Laitinen, T. Sajavaara, M. Guina, Variation of lattice constant and cluster formation in GaAsBi. J. Appl. Phys. 114, 243504 (2013)

    ADS  Google Scholar 

  8. C.R. Tait, L. Yan, J.M. Millunchick, Spontaneous nanostructure formation in GaAsBi alloys. J. Cryst. Growth 493, 20–24 (2018)

    ADS  Google Scholar 

  9. S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N.S. Köster, K. Kolata, S. Chatterjee, S.W. Koch, X. Lu, S.R. Johnson, D.A. Beaton, T. Tiedje, O. Rubel, Clustering effects in Ga(AsBi). Appl. Phys. Lett. 96, 131115 (2010)

    ADS  Google Scholar 

  10. T. Thomas, A. Mellor, N.P. Hylton, M. Führer, D. Alonso-Álvarez, A. Braun, N.J. Ekins-Daukes, J.P.R. David, S.J. Sweeney, Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semicond. Sci. Technol. 30, 094010 (2015)

    ADS  Google Scholar 

  11. R.D. Richards, A. Mellor, F. Harun, J.S. Cheong, N.P. Hylton, T. Wilson, T. Thomas, J.S. Roberts, N.J. Ekins-Daukes, J.P.R. David, Photovoltaic characterisation of GaAsBi/GaAs multiple quantum well devices. Sol. Energy Mater. Sol. Cells 172, 238–243 (2017)

    Google Scholar 

  12. I.P. Marko, S.R. Jin, K. Hild, Z. Batool, Z.L. Bushell, P. Ludewig, W. Stolz, K. Volz, R. Butkutė, V. Pačebutas, A. Geizutis, A. Krotkus, S.J. Sweeney, Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers. Semicond. Sci. Technol. 30, 094008 (2015)

    ADS  Google Scholar 

  13. I.P. Marko, C.A. Broderick, S. Jin, P. Ludewig, W. Stolz, K. Volz, J.M. Rorison, E.P. O’Reilly, S.J. Sweeney, Optical gain in GaAsBi/GaAs quantum well diode lasers. Sci. Rep. 6, 28863 (2016)

    ADS  Google Scholar 

  14. P.K. Patil, F. Ishikawa, S. Shimomura, Bismuth flux dependence of GaAsBi/GaAs MQWs grown by molecular beam epitaxy using two-substrate-temperature technique. Superlattices Microstruct. 106, 50–57 (2017)

    ADS  Google Scholar 

  15. P.K. Patil, E. Luna, T. Matsuda, K. Yamada, K. Kamiya, F. Ishikawa, S. Shimomura, GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique. Nanotechnology 28, 105702 (2017)

    ADS  Google Scholar 

  16. S. Pūkienė, M. Karaliūnas, A. Jasinskas, E. Dudutienė, B. Čechavičius, J. Devenson, R. Butkutė, A. Udal, G. Valušis, Enhancement of photoluminescence of GaAsBi quantum wells by parabolic design of AlGaAs barriers. Nanotechnology 30, 455001 (2019)

    ADS  Google Scholar 

  17. C. Cetinkaya, E. Cokduygulular, F. Nutku, O. Donmez, J. Puustinen, J. Hilska, A. Erol, M. Guina, Optical properties of n- and p-type modulation doped GaAsBi/AlGaAs quantum well structures. J. Alloys Compd. 739, 987–996 (2018)

    Google Scholar 

  18. R.D. Richards, C.J. Hunter, F. Bastiman, A.R. Mohmad, J.P.R. David, Telecommunication wavelength GaAsBi light emitting diodes. IET Optoelectron. 10, 34–38 (2016)

    Google Scholar 

  19. R.B. Lewis, D.A. Beaton, X. Lu, T. Tiedje, GaAs1 - x Bix light emitting diodes. J. Cryst. Growth 311, 1872–1875 (2009)

    ADS  Google Scholar 

  20. H. Kawata, S. Hasegawa, H. Nishinaka, M. Yoshimoto, Improving the photovoltaic properties of GaAs/GaAsBi pin diodes by inserting a compositionally graded layer at the hetero-interface. Semicond. Sci. Technol. 37, 065016 (2022)

    ADS  Google Scholar 

  21. R.D. Richards, F. Harun, M.R.M. Nawawi, Y. Liu, T.B.O. Rockett, J.P.R. David, Temperature and band gap dependence of GaAsBi p–i–n diode current–voltage behaviour. J. Phys. D. Appl. Phys. 54, 195102 (2021)

    ADS  Google Scholar 

  22. Y. Liu, X. Yi, N.J. Bailey, Z. Zhou, T.B.O. Rockett, L.W. Lim, C.H. Tan, R.D. Richards, J.P.R. David, Valence band engineering of GaAsBi for low noise avalanche photodiodes. Nat. Commun. 12, 4784 (2021)

    ADS  Google Scholar 

  23. R.D. Richards, F. Bastiman, J.S. Roberts, R. Beanland, D. Walker, J.P.R. David, MBE grown GaAsBi/GaAs multiple quantum well structures: Structural and optical characterization. J. Cryst. Growth 425, 237–240 (2015)

    ADS  Google Scholar 

  24. T.B.O. Rockett, N.A. Adham, F. Harun, J.P.R. David, D. Richards, Growth of GaAsBi/GaAs multiple quantum wells with up to 120 periods. J. Cryst. Growth 589, 126679 (2022)

    Google Scholar 

  25. M. Yoshimoto, M. Itoh, Y. Tominaga, K. Oe, Quantitative estimation of density of Bi-induced localized states in GaAs1-xBix grown by molecular beam epitaxy. J. Cryst. Growth 378, 73–76 (2013)

    ADS  Google Scholar 

  26. T. Wilson, N.P. Hylton, Y. Harada, P. Pearce, D. Alonso-Álvarez, A. Mellor, R.D. Richards, J.P.R. David, N.J. Ekins-Daukes, Assessing the nature of the distribution of localised states in bulk GaAsBi. Sci. Rep. 8, 6457 (2018)

    ADS  Google Scholar 

  27. A. Ahaitouf, A. Bath, P. Thevenin, E. Abarkan, Analysis of interface states of n-InP MIS structures based on bias dependence of capacitance and photoluminescence intensity. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 77, 67–72 (2000)

    Google Scholar 

  28. Z. Wang, Z. Huang, G. Liu, B. Cai, S. Zhang, Y. Wang, In-situ and reversible enhancement of photoluminescence from CsPbBr 3 nanoplatelets by electrical bias. Adv. Opt. Mater. 9, 1–9 (2021)

    Google Scholar 

  29. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Composition dependence of photoluminescence of GaAs1-x Bi x alloys. Appl. Phys. Lett. 95, 041903 (2009)

    ADS  Google Scholar 

  30. R.D. Richards, F. Bastiman, C.J. Hunter, D.F. Mendes, A.R. Mohmad, J.S. Roberts, J.P.R. David, Molecular beam epitaxy growth of GaAsBi using As2 and As 4. J. Cryst. Growth 390, 120–124 (2014)

    ADS  Google Scholar 

  31. R.D. Richards, F. Bastiman, D. Walker, R. Beanland, J.P.R. David, Growth and structural characterization of GaAsBi/GaAs multiple quantum wells. Semicond. Sci. Technol. 30, 094013 (2015)

    ADS  Google Scholar 

  32. N. Hossain, I.P. Marko, S.R. Jin, K. Hild, S.J. Sweeney, R.B. Lewis, D.A. Beaton, T. Tiedje, Recombination mechanisms and band alignment of GaAs 1–x Bi x /GaAs light emitting diodes. Appl. Phys. Lett. 100, 051105 (2012)

    ADS  Google Scholar 

  33. W.M. Linhart, R. Kudrawiec, Temperature dependence of band gaps in dilute bismides. Semicond. Sci. Technol. 33, 073001 (2018)

    ADS  Google Scholar 

  34. A.R. Mohmad, F. Bastiman, J.S. Ng, S.J. Sweeney, J.P.R. David, Photoluminescence investigation of high quality GaAs1−xBix on GaAs. Appl. Phys. Lett. 98, 122107 (2011)

    ADS  Google Scholar 

  35. Jack C, Hunter O (2014) Growth and characterization of bulk GaAs 1-x Bi x /GaAs diodes Dr. Diss. Univ. Sheff.

  36. A.R. Mohmad, F. Bastiman, C.J. Hunter, R.D. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, B.Y. Majlis, Localization effects and band gap of GaAsBi alloys. Phys. Status Solidi Basic Res. 251, 1276–1281 (2014)

    ADS  Google Scholar 

  37. Y.I. Mazur, V.G. Dorogan, M. Schmidbauer, G.G. Tarasov, S.R. Johnson, X. Lu, S.-Q. Yu, Z.M. Wang, T. Tiedje, G.J. Salamo, Optical evidence of a quantum well channel in low temperature molecular beam epitaxy grown Ga(AsBi)/GaAs nanostructure. Nanotechnology 22, 375703 (2011)

    Google Scholar 

  38. Y.I. Mazur, V.G. Dorogan, L.D. de Souza, D. Fan, M. Benamara, M. Schmidbauer, M.E. Ware, G.G. Tarasov, S.-Q. Yu, G.E. Marques, G.J. Salamo, Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs 1–x Bi x /GaAs heterostructures. Nanotechnology 25, 035702 (2014)

    ADS  Google Scholar 

  39. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, Temperature quenching of photoluminescence intensities in undoped and doped GaN. J. Appl. Phys. 86, 3721–3728 (1999)

    ADS  Google Scholar 

  40. H. Shibata, Negative thermal quenching curves in photoluminescence of solids. Jpn. J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 37, 550–553 (1998)

    Google Scholar 

  41. X. Chen, X. Wu, L. Yue, L. Zhu, W. Pan, Z. Qi, S. Wang, J. Shao, Negative thermal quenching of below-bandgap photoluminescence in InPBi. Appl. Phys. Lett. 110, 051903 (2017)

    ADS  Google Scholar 

  42. O. Rubel, S.D. Baranovskii, K. Hantke, B. Kunert, W.W. Rühle, P. Thomas, K. Volz, W. Stolz, Model of temperature quenching of photoluminescence in disordered semiconductors and comparison to experiment. Phys. Rev. B - Condens. Matter Mater. Phys. 73, 1–4 (2006)

    Google Scholar 

  43. M.K. Shakfa, M. Wiemer, P. Ludewig, K. Jandieri, K. Volz, W. Stolz, S.D. Baranovskii, M. Koch, Thermal quenching of photoluminescence in Ga(AsBi). J. Appl. Phys. 117, 025709 (2015)

    ADS  Google Scholar 

Download references

Funding

Funding support from Kerala State Council for Science Technology and Environment through the KSYSA Research Grant Scheme is acknowledged. The authors thank Sandeep for processing the p–i–n devices. S.S.J. acknowledges support from D.S.T., India, through Inspire fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Methodology: SJS and TBOR; formal analysis and investigation: ASS; writing—original draft preparation: ASS; resources: RDR, JPRD, and RNK; conceptualization, funding acquisition, and supervision: RNK; writing—review and editing: all the authors.

Corresponding authors

Correspondence to Akant Sagar Sharma or R. N. Kini.

Ethics declarations

Conflict of interest

The author does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 297 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreerag, S.J., Sharma, A.S., Rockett, T.B.O. et al. Negative thermal quenching in optically pumped GaAsBi–GaAs heterojunction p–i–n diode. Appl. Phys. A 129, 603 (2023). https://doi.org/10.1007/s00339-023-06875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06875-9

Keywords

Navigation