Skip to main content
Log in

Ferroelectric, electronic and magnetic properties of Mn2ScMO6 (M = Nb, Ta) double corundum oxides via first principles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polar magnetic oxides are technologically of great interest due to their promising applications in futuristic electronic devices, but they are very rare due to the co-existence of contraindicating important physical features such as magnetization and polarization. In this study, polar corundum double oxides Mn2ScMO6 (M = Nb, Ta) in non-centrosymmetric symmetry (space group R3) with antiferromagnetic (AFM) magnetic phase are investigated using density functional theory (DFT). The electric polarization arises due to the distorted crystal symmetry and d0 electronic configuration of M atom, and the unpaired dn orbital configuration of Mn atom is responsible for magnetization. The large values of polarization (41.39 and 26.7 μC/cm2) and large magnetic moments (5.96 and 6.18 µB/Mn2+) make them suitable candidates for magnetic, ferroelectric and magneto-electric applications. The polarization with applied strain and magnetic field is varied in these multiferroics Mn2ScMO6 (M = Nb, Ta). The Mn1 site is completely occupied by magnetic Mn2+ ions, but Mn2 site is partially occupied by magnetic Mn2+ and non-magnetic Sc3+ ions, and thus, the net magnetic moment of 1.16 (1.29) µB/f.u (f.u = formula unit) in Mn2ScNbO6 (Mn2ScTaO6) arises due to site selective anti-site disorder, and hence, both the compounds are ferrimagnetic (FiM) in nature. Born effective charges (BECs) which are important to estimate the change in polarization with change in atomic position are also investigated. The mechanical parameters revealed that these compounds are mechanically stable in rhombohedral crystal symmetry and have high resistance to deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be available on request.

References

  1. W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Nat. Nano Technol. 9, 794–807 (2014)

    ADS  Google Scholar 

  2. Y. Zhao, L. Lin, Q. Zhou, Y. Li, S. Yuan, Q. Chen, S. Dong, J. Wang, Nano Lett. 18, 2943–2949 (2018)

    ADS  Google Scholar 

  3. C. Huang, Y. Du, H. Wu, H. Xiang, K. Deng, E. Kan, Phys. Rev. Lett. 120, 147601 (2018)

    ADS  Google Scholar 

  4. J. Qi, H. Wang, X. Chen, X. Qian, Appl. Phys. Lett. 113, 043102 (2018)

    ADS  Google Scholar 

  5. M. Wang, X. Sui, Y. Wang, Y.H. Juan, Y. Lvu, H. Peng, T. Huang, S. Shen, C. Guo, J. Zhang, Adv. Mater. 31, 1900458 (2019)

    Google Scholar 

  6. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  7. A.A. Belik, J. Solid Stat. Chem. 195, 32–40 (2012)

    ADS  Google Scholar 

  8. M. Balli, B. Roberge, P. Fournier, S. Jandl, Crystals 7, 44 (2017)

    Google Scholar 

  9. Z.Y. Zhao, M.F. Liu, X. Li, L. Lin, Z.B. Yan, S. Dong, J.-M. Liu, J. Appl. Phy. 116, 054104 (2014)

    ADS  Google Scholar 

  10. Z.R. Yan, M.H. Qin, S. Dong, M. Zeng, X.B. Lu, X.S. Gao, J.-M. Liu, Phys. Rev. B 94, 024410 (2016)

    ADS  Google Scholar 

  11. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Google Scholar 

  12. C. Gong, E.M. Kim, Y. Wang, G. Lee, X. Zhang, Nat. Commun. 10, 2657 (2019)

    ADS  Google Scholar 

  13. D.I. Khomskii, J. Magn. Magn. Mater. 306, 1–8 (2006)

    ADS  Google Scholar 

  14. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nature Rev. Mater. 1, 1–14 (2016)

    Google Scholar 

  15. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    ADS  Google Scholar 

  16. A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, E.T. Muromachi, Chem. Mater. 18, 798–803 (2006)

    Google Scholar 

  17. Y. Han, C. Zhu, Y. Peng, S. Li, M. Wu, S. Zhao, M.R. Li, Chem. Mater. 32, 1618–1626 (2020)

    Google Scholar 

  18. K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W.L.D. Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A.J. Studer, C.S. Knee, K. Tanaka, Chem. Mater. 28, 6644–6655 (2016)

    Google Scholar 

  19. M.R. Li, U. Adem, S.R.C. McMitchell, Z. Xu, C.I. Thomas, J.E. Warren, D.V. Giap, H. Niu, X. Wan, R.G. Palgrave, F. Schiffmann, F. Cora, B. Slater, T.L. Burnett, M.G. Cain, A.M. Abakumov, G. Tendeloo, M.F. Thomas, M.J. Rosseinsky, J.B. Claridge, J. Am. Chem. Soc. 134, 3737–3747 (2012)

    Google Scholar 

  20. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 99, 1719–1722 (2003)

    ADS  Google Scholar 

  21. W. Wang, J. Zhao, W. Wang, Z. Gai, N. Balke, M. Chi, H.N. Lee, W. Tian, L. Zhu, X. Cheng, D.J. Keavney, J. Yi, T.Z. Ward, P.C. Snijders, H.M. Christen, W. Wu, J. Shen, X. Xu, Phys. Rev. Lett. 110, 237601 (2013)

    ADS  Google Scholar 

  22. G.H. Cai, M. Greenblatt, M.R. Li, Chem. Mater. 29, 5447–5457 (2017)

    Google Scholar 

  23. M. Kazan, G. Guisbiers, S. Pereira, M.R. Correia, P. Masri, A. Bruyant, S. Volz, P. Royer, J. App. Phys. 107, 083503 (2010)

    ADS  Google Scholar 

  24. S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, S. Mori, App. Phys. Lett. 92, 182905 (2008)

    ADS  Google Scholar 

  25. G. Fan, W. Lu, X. Wang, F. Liang, App. Phys. Lett. 91, 202908 (2007)

    ADS  Google Scholar 

  26. M.H. Zhao, X. Zhou, Y. Han, D. Jiang, Y. Wang, K. Li, H. Zheng, H. Gou, L. Chen, M.R. Li, Chem. Mater. 34(22), 10153–10161 (2022)

    Google Scholar 

  27. Y. Han, M. Wu, C. Gui, C. Zhu, Z. Sun, M. H. Zhao et al. npj Quantum Mater. 5(1), (2020) 92.

  28. E.S. Madruga, A.J.D.S. García, A.M.A. López, D.Á. Brande, C. Ritter, J.P. Attfield, R.S. Puche, Dalton Trans. 44, 20441–20448 (2015)

    Google Scholar 

  29. M.R. Li, P.W. Stephens, M. Retuerto, T. Sarkar, C.P. Gurams, J. Hemberger, M.C. Croft, D. Walker, M. Greenblatt, J. Amer. Chem. Soc. 136, 8508–8511 (2014)

    Google Scholar 

  30. M.R. Li, M. Croft, P.W. Stephens, M. Ye, D. Vanderbilt, M. Retuerto, Z. Deng, C.P. Grams, J. Hemberger, J. Hadermann, W.M. Li, Adv. Mater. 27, 2177–2181 (2015)

    Google Scholar 

  31. R. Mathieu, S.A. Ivanov, I.V. Solovyev, G.V. Bazuev, P.A. Kumar, P. Lazor, P. Nordblad, Phys. Rev. B 87, 014408 (2013)

    ADS  Google Scholar 

  32. Y. Meng, D. Vanderbilt, Phys. Rev. B 93, 134303 (2016)

    ADS  Google Scholar 

  33. M. Veithen P. Ghosez, Phys. Rev. B 65, 214302 (2002).

  34. C.J. Fennie, Phys. Rev. Lett. 100, 167203 (2008)

    ADS  Google Scholar 

  35. A.M. Lopez, G.M. McNally, J.P. Attfield, Angew. Chem. Int. Ed. 54, 12074–12077 (2015)

    Google Scholar 

  36. H.L. Feng, C.J. Kang, B. Kim, K. Kim, M. Croft, S. Liu, M. Greenblatt, Chem. Mater. 33, 6522–6529 (2021)

    Google Scholar 

  37. R. Mathieu, S.A. Ivanov, G.V. Bazuev, M. Hudl, P. Lazor, I.V. Solovyev, P. Nordblad, App. Phys. Lett. 98, 202505 (2011)

    ADS  Google Scholar 

  38. P.M. Woodward, A.W. Sleight, L.S. Du, C.P. Grey, J. Solid, State Chem. 147(1), 99–116 (1999)

    ADS  Google Scholar 

  39. G. Vaitheeswaran, V. Kanchana, A. Delin, J. Phys. Conf. Ser. 29, 008 (2006)

    Google Scholar 

  40. H.T. Jeng, G.Y. Guo, Phys. Rev. B 67, 094438 (2003)

    ADS  Google Scholar 

  41. M.R. Li, E.E. McCabe, P.W. Stephens, M. Croft, L. Collins, S.V. Kalinin, Z. Deng, M. Retuerto, A.S. Gupta, H. Padmanabhan, V. Gopalan, Nat. Commun. 8, 1–9 (2017)

    Google Scholar 

  42. M.R. Li, M. Retuerto, D. Walker, T. Sarkar, P.W. Stephens, S. Mukherjee, T.S. Dasgupta, Angew. Chem. 126, 10950–10954 (2014)

    ADS  Google Scholar 

  43. A. Ali, H.I. Elsaeedy, S. Ullah, S.A. Khan, I. Khan, J. Magn. Magn. Mater. 563, 169942 (2022)

    Google Scholar 

  44. A. Ali, H.E. Ali, I. Khan, Mater. Chem. Phys. 296, 127197 (2023)

    Google Scholar 

  45. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k. J. Chem. Phys. 152, 074101 (2020)

    ADS  Google Scholar 

  46. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Google Scholar 

  47. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Cond. Matt. 9, 767 (1997)

    ADS  Google Scholar 

  48. S.J. Ahmed, J. Kivinen, B. Zaporzan, L. Curiel, S. Pichardo, O. Rubel, Comp. Phys. Commun. 184, 647–651 (2013)

    ADS  Google Scholar 

  49. H.L. Feng, Z. Deng, M. Croft, S.H. Lapidus, R. Zu, V. Gopalan, C.P. Grams, J. Hemberger, S. Liu, T.A. Tyson, C.E. Frank, Inorg. Chem. 58, 15953–15961 (2019)

    Google Scholar 

  50. F. Birch, Phys. Rev. 71, 809–824 (1947)

    ADS  Google Scholar 

  51. R. Resta, D. Vanderbilt, Theory of polarization: a modern approach, Springer: Berlin. Heidelberg 105, 31–68 (2007)

    Google Scholar 

  52. M.R. Li, D. Walker, M. Retuerto, T. Sarkar, J. Hadermann, P.W. Stephens, M. Croft, Ang. Chem. 125, 8564–8568 (2013)

    Google Scholar 

  53. I.D. Brown, Chem. Rev. 109, 6858–6919 (2009)

    Google Scholar 

  54. J. Ding, L. Wen, Y. Liu, Y. Zhang, J. Magn. Magn. Mater. 535, 168035 (2021)

    Google Scholar 

  55. M. Saeed, I. U. Haq, A. S. Saleemi, S. U. Rehman, B. U. Haq, A. R. Chaudhry and I Khan, J. Phys. Chem. Solids, 160, 110302 (2022).

    ADS  Google Scholar 

  56. M. Saeed, I. U. Haq, S. U. Rehman, A. Ali, W. A. Shah, Z. Ali, Q. Khan, I. Khan, Chin. Opt. Lett. 19, 030004 (2021).

    Google Scholar 

  57. B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar, Chin. Phys. Lett. 34, 016101 (2017)

    ADS  Google Scholar 

  58. S. Zhao, J.J. Yang, Y.F. Han, M.X. Wu, M. Croft, P.W. Stephens, D. Walker, M. Greenblatt, M.R. Li, Chem. Mater. 34, 1930–1936 (2022)

    Google Scholar 

  59. R. Golesorkhtabar, P. Pavone, J. Spitalera, P. Puschnig, C. Draxl, Comp. Phys. Commun. 184, 1861 (2013)

    ADS  Google Scholar 

  60. I.J.A. Mummar, G.A. Saunders, Phys. Rev. B 34, 4304 (1986)

    ADS  Google Scholar 

  61. H. Zhang, Y. Cheng, M. Tang, X. Chen, G. Ji, Comp. Mater. Sci. 96, 342–347 (2015)

    Google Scholar 

  62. G.V. Sin’Ko, N.A. Smirnov, Phys. Rev. B 71, 214108 (2005).

  63. G.V. Sin’Ko, N.A. Smirnov, J. Phys. Cond. Matter 14, 6989 (2002).

  64. W. Voigt, “Lehrbuch der Kristallphysik” Taubner, Leipzig., 1928, 2nd edn.

  65. A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)

    Google Scholar 

  66. R. Hill, Proc. Phys. Soc. Sec. A 65, 349 (1952)

    ADS  Google Scholar 

  67. S.F. Pugh, XCII. J. Sci. 45, 823–843 (1954)

    Google Scholar 

  68. M.W. Lufaso, P.M. Woodward, Acta. Crystallogr. B 57, 725–738 (2001)

    Google Scholar 

  69. N.A. Spaldin, J. Solid Stat. Chem. 195, 2–10 (2012)

    ADS  Google Scholar 

  70. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)

    ADS  Google Scholar 

  71. D. Vanderbilt, R.D. King-Smith, Phys. Rev. B 48, 4442 (1993)

    ADS  Google Scholar 

  72. R. Resta, Rev. Mod. Phys. 66, 899 (1994)

    ADS  Google Scholar 

  73. Y. Zhang, J. Sun, J.P. Perdew, X. Wu, Phys. Rev. B 96, 035143 (2017)

    ADS  Google Scholar 

  74. G. Song, W. Zhang, Sci. Rep. 6, 20133 (2016)

    ADS  Google Scholar 

  75. S.A. Ivanov, R. Mathieu, P. Nordblad, R. Tellgren, C. Ritter, E. Politova, G. Kaleva, A. Mosunov, S. Stefanovich, M. Weil, Chem. Mater. 25, 935–945 (2013)

    Google Scholar 

Download references

Acknowledgements

The author (H. I. Elsaeedy) extend her appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant No. RGP.2/151/44.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AA: software, writing—original draft preparation, formal analysis, validation, investigation, and data curation. HIE: formal analysis, and writing—reviewing and editing. IUH: writing—reviewing and editing, methodology, and software. IK: supervision, conceptualization, methodology, visualization, and project administration.

Corresponding author

Correspondence to Imad Khan.

Ethics declarations

Conflict of interest

No conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Elsaeedy, H.I., Haq, I.U. et al. Ferroelectric, electronic and magnetic properties of Mn2ScMO6 (M = Nb, Ta) double corundum oxides via first principles. Appl. Phys. A 129, 593 (2023). https://doi.org/10.1007/s00339-023-06870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06870-0

Keywords

Navigation