Skip to main content
Log in

Effect of ECAP processing routes on the microstructural characteristics of commercial purity titanium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The processing routes in equal channel angular pressing (ECAP), which are defined by rotating the billet around its longitudinal axis between two consecutive passes, have an essential effect on the amount of grain refinement. However, in most of the previous studies, first, dies with a channel angle of 90° have been mostly used. second, the effect of ECAP routes has been only investigated on the resultant grain size, and the dislocation density has rarely been addressed. In order to cover the mentioned research gap, in this research, firstly, a different channel angle was chosen from other previous studies. Secondly, besides the grain size, the emphasis was placed on the calculation of the dislocation density, which has not been addressed in previous studies. To achieve this goal, the capability of different ECAP routes (A, BA, BC, B45, and C) on the amount of grain refinement and dislocation density induced in commercial purity titanium (CP-Ti) in a 105° ECAP die was investigated. ECAP was conducted at 250 °C for eight passes. Besides direct observations by transmission electron microscopy (TEM), the microstructure was also characterized by analyzing the broadening of the X-ray peak profiles using the modified Warren–Averbach method. The main findings were as follows: (1) In terms of grain size refining capability, both TEM and X-ray analysis demonstrated that BC is the most efficient route while C is the least efficient one. The order of efficiency was as: BC > BA > B45 > A > C. (2) Different result has been obtained for dislocation density. Route A was seen to make the highest amount of dislocation density in titanium after eight ECAP passes (\({\rho }_{A}=1.09 \times {10}^{16}{\mathrm{m}}^{-2})\). This value is nearly twice that measured for route C. (3) The ability of different ECAP routes to increase the dislocation density of titanium was obtained as A > BA > BC > B45 > C. The above results indicate that using an ECAP die with a larger channel angle may give different results than those generally obtain from 90° dies. At least in the case of commercially pure titanium, it was observed that to reach the highest dislocation density, route A is much more effective than route BC which is often known as the best route in ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Y. Chehrehsaz, K. Hajizadeh, A. Hadjizadeh, L. Moradi, S. Mahshid, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-021-01003-9

    Article  Google Scholar 

  2. G. Lutjering, J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2003), pp.3–12

    Book  Google Scholar 

  3. Z. Zhang, Q. Yang, Z. Yu, H. Wang, T. Zhang, Mater. Charact. (2022). https://doi.org/10.1016/j.matchar.2022.111962

    Article  Google Scholar 

  4. J. Xie, Y. Chen, L. Yin, T. Zhang, S. Wang, L. Wang, J. Manuf. Process (2021). https://doi.org/10.1016/j.jmapro.2021.02.009

    Article  Google Scholar 

  5. K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2013.11.001

    Article  Google Scholar 

  6. M. Eftekhari, G. Faraji, S. Nikbakht, R. Rashed, R. Sharifzadeh, R. Hildyard, M. Mohammadpoor, Mater. Sci. Eng. A. (2017). https://doi.org/10.1016/j.msea.2017.07.088

    Article  Google Scholar 

  7. G.G. Yapici, I. Karaman, H.J. Maier, Mater. Sci. Eng. A (2006). https://doi.org/10.1016/j.msea.2006.06.082

    Article  Google Scholar 

  8. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, Mater. Sci. Eng. A (2001). https://doi.org/10.1016/S0921-5093(00)01411-8

    Article  Google Scholar 

  9. M.J. Qarni, G. Sivaswamy, A. Rosochowski, S. Boczkal, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.03.015

    Article  Google Scholar 

  10. S. Kadiyan, B.S. Dehiya, Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab4a44

    Article  Google Scholar 

  11. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A (2001). https://doi.org/10.1016/S0921-5093(00)01411-8

    Article  Google Scholar 

  12. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. (2000). https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  13. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. (2006). https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  Google Scholar 

  14. K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A (2000). https://doi.org/10.1016/S0921-5093(99)00744-3

    Article  Google Scholar 

  15. S.L. Semiatin, V.M. Segal, R.E. Goforth, Metall. Mater. Trans. A (1999). https://doi.org/10.1007/s11661-999-0290-7

    Article  Google Scholar 

  16. K. Hajizadeh, B. Eghbali, Met. Mater. Int. (2014). https://doi.org/10.1007/s12540-014-2014-9

    Article  Google Scholar 

  17. P.R. Celtin, M.T. Paulino Aguilar, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. (2010). https://doi.org/10.1007/s10853-010-4384-9

    Article  Google Scholar 

  18. R.B. Figueiredo, P.R. Celtin, T.G. Langdon, Acta Mater. (2007). https://doi.org/10.1016/j.actamat.2007.04.043

    Article  Google Scholar 

  19. R.B. Figueiredo, M.T. Paulino Aguilar, P.R. Celtin, Mater. Sci. Eng. A (2006). https://doi.org/10.1016/j.msea.2006.05.116

    Article  Google Scholar 

  20. P.B. Prangnell, A. Gholinia, V.M. Markushev, in investigations and applications of severe plastic deformation. ed. by T.C. Lowe, R.Z. Valiev (Kluwer Academic Pub, Dordrecht, 2000), pp.65–71

    Chapter  Google Scholar 

  21. M.R. Movaghar Garabagh, S. Hossein Nedjad, H. Shirazi, M. Iranpour Mobarekeh, M. Nili Ahmadabadi, Thin Solid Films (2008). https://doi.org/10.1016/j.tsf.2008.04.019

    Article  Google Scholar 

  22. K. Hajizadeh, V. Abbasi Chianeh, K.J. Kurzydlowski, Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05885-3

    Article  Google Scholar 

  23. L. Liang, M. Xu, Y. Chen, T. Zhang, W. Tong, H. Liu, H. Wang, H. Li, Mater. Sci. Eng. A (2021). https://doi.org/10.1016/j.msea.2021.141507

    Article  Google Scholar 

  24. G.K. Williamson, W.H. Hall, Acta. metal. (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  25. T. Ungar, J. Gubicza, G. Ribarik, A. Borbely, J. Appl, Cryst. (2001). https://doi.org/10.1107/S0021889801003715

    Article  Google Scholar 

  26. C. Zhang, H. Khorshidi, E. Najafi, M. Ghasemi, J. Clean. Prod. (2023). https://doi.org/10.1016/j.jclepro.2022.135390

    Article  Google Scholar 

  27. B.E. Warren, B.L. Averbach, J. Appl. Phys. (1950). https://doi.org/10.1063/1.1699713

    Article  Google Scholar 

  28. B.E. Warren, X-ray diffraction (Dover Pub, New York, 1990), pp.81–89

    Google Scholar 

  29. B.E. Warren, Prog. Met. Phys. (1959). https://doi.org/10.1016/0502-8205(59)90015-2

    Article  Google Scholar 

  30. M. Wilkens, Phys. Status. Solidi. A (1970). https://doi.org/10.1002/pssa.19700020224

    Article  Google Scholar 

  31. T. Ungar, A. Borbely, Appl. Phys. Lett. (1996). https://doi.org/10.1063/1.117951

    Article  Google Scholar 

  32. I.C. Dragomir, T. Ungar, J. Appl. Cryst. (2002). https://doi.org/10.1107/S0021889802009536

    Article  Google Scholar 

  33. Y.T. Zhu, T.C. Lowe, Mater. Sci. Eng. A (2000). https://doi.org/10.1016/S0921-5093(00)00978-3

    Article  Google Scholar 

  34. E. Guler, G. Ugur, S. Ugur, M. Guler, R. Khenata, Bull. Mater. Sci. (2021). https://doi.org/10.1007/s12034-020-02342-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Urmia University of Technology for their technical support, which made this research possible.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by [KH], [HF] and [KJK]. The first draft of the manuscript was written by [KH], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Hajizadeh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, K., Farhad, H. & Kurzydlowski, K.J. Effect of ECAP processing routes on the microstructural characteristics of commercial purity titanium. Appl. Phys. A 129, 583 (2023). https://doi.org/10.1007/s00339-023-06868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06868-8

Keywords

Navigation