Skip to main content
Log in

Unraveling the structural, dielectric, magnetodielectric, multiferroic, and magnetic properties of (1 − x)LiNbO3xLa0.9Na0.1MnO3 (x = 0.1, 0.2, and 0.3) nanocomposite materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroic composites offer promising prospects for low-power multifunctional devices. Here, we report the structural, electrical, dielectric, magnetic, and magnetodielectric properties of the multiferroic composite material (1 − x)LiNbO3xLa0.9Na0.1MnO3 (where x = 0.1, 0.2, and 0.3). Ferroelectric and magnetic phases were synthesized using citrate gel method and the conventional solid-state reaction method was used for the preparation of multiferroic composite material with different mixing percentage values of x. X-ray diffraction was used to confirm the crystalline purity and the crystal structure of the material. The microstructural and elemental composition analyses were done by FE-SEM, X-ray photon spectroscopic (XPS), and EDAX techniques. Dielectric studies and impedance analysis imply the dynamic behavior of charge carriers inside the composites. The maximum value of dielectric constant (5000) was obtained at x = 0.3 for xLa0.9Na0.1MnO3 phase. From impedance analysis method, the equivalent circuit of (1 − x)LiNbO3xLa0.9Na0.1MnO3 (where x = 0.1, 0.2, and 0.3) composite was found out. The PE hysteresis loop reveals the ferroelectric nature of the composite. Sample with x = 0.1 of xLa0.9Na0.1MnO3 phase gives the highest values for maximum polarization and remnant polarization. The enhanced magnetic properties of the composite material were substantiated with MH hysteresis loop measurements. The magnetodielectric and magnetoelectric coupling measurements revealed the presence of ferroelectric and ferromagnetic coupling nature of the composite material. From all these analyses, the multiferroic composites with the composition x = 0.3(La0.9Na0.1MnO3) yields the maximum ferroelectric and magnetic coupling behavior. So, this composite material has wide applications in multifunctional nano devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig 20
Fig 21

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  ADS  Google Scholar 

  2. H. Schmid, Multi-ferroicmagnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  ADS  Google Scholar 

  3. Biao Wang, Multiferroic materials. Adv. Funct. Mater. 8,377–441 (2013). https://doi.org/10.1007/978-3-642-33596-9_8

  4. J. Van Suchtelen, Product Properties: A New Application Of Composite Materials. Phillips Research Reports 27, 28–37 (1972)

  5. V.J. Folen, G.T. Rado, E.W. Stalder, Anistropy of the magnetodielectric effect in Cr2O3. Phys. Rev. Lett. 6, 607–608 (1961)

    Article  ADS  Google Scholar 

  6. K. Bhoi, H.S. Mohanty, Ravikant, M.F. Abdullah, D.K. Pradhan, Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci. Rep. 11, 3149 (2021)

  7. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Recent development and status magnetoelectric materials and devices. Phys. Lett. A 382, 3018–3025 (2018)

    Article  ADS  Google Scholar 

  8. C.W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Lin, Coupled magnetic–electric properties and critical behaviour in multiferroic particulate composites. J. Appl. Phys. 94, 5930–5936 (2003)

    Article  ADS  Google Scholar 

  9. C.S. Werner, S.J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, I. Breunig, Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

  10. M.A. Fakhri, Y. Al-Douri, U. Hasim, Optical investigations of photonics lithium niobate. Sol. Energy 120, 381–388 (2015)

    Article  ADS  Google Scholar 

  11. C. Diaz-Moreno, R. Farois, A. Hurtado-Macias, J. Elizalde-Galindo, J. Hernandez-Paz, Multiferroic response of nanocrystalline lithium niobate. J. Appl. Phys. 111, 07D907 (2012)

  12. M.C. Mozzati, L. Malavasi, C.B. Azzoni, Magnetic properties of nanostructured sodium-doped lanthanum manganites. J. Magn. Magn. Matter 1579, 272–276 (2004)

    Google Scholar 

  13. S. Roy, Y.Q. Guo, S. Venkatesh, N. Ali, Interplay structure and transport properties of sodium-doped lanthanum manganite. J. Phys. Condens. Matter. 13, 9547–9559 (2001)

    Article  ADS  Google Scholar 

  14. A.I. Tovstolytkin, V.M. Tsmots, L.I. Pankiv, P.G. Litovchenko, Magnetic and magnetoresistive properties of sodium substituted lanthanum manganites. J. Low Temp. Phys. 36, 220–225 (2010). https://doi.org/10.1063/1.3331493

    Article  Google Scholar 

  15. G.H. Rao, J.R. Sun, K. Barner, N. Hamad, Crystal structure and magnetoresistance of Na-doped LaMnO3. J. Phys. Condens. Matter 11, 1523–1528 (1999)

    Article  ADS  Google Scholar 

  16. D. Dhruv, B. Kataria, B. Kataria, C.M. Thaker, S. Rayaprol, C.L. Prajapat, M.R. Singh, P.S. Solanki, D.G. Kuberkar, N.A. Shah, Ceram. Int. 41, 7162–7173 (2015)

    Article  Google Scholar 

  17. A. El Bacheri, M. El Hasnaoui, A. Louardi, A. Narjis, Structural and dielectric studied for the conduction mechanism analyses of Lithium niobate oxide ferroelectric ceramics. Phys. B Condens. Matter 57, 181–187 (2019)

    Article  Google Scholar 

  18. E.A. Skryleva, B.R. Senatulin, D.A. Kiselev, T.S. Ilina, D.A. Podgorny, Y.N. Parkhomenko, Ar gas cluster ion beam assisted XPS study of LiNbO3 Zcut surface. Surf. Interfaces 26, 101428 (2021)

    Article  Google Scholar 

  19. A. Machocki, T. Ioannides, Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J. Catal. 227, 282–296 (2004)

    Article  Google Scholar 

  20. N. Adhlakha, K.L. Yadav, Structural, dielectric, magnetic, and optical properties of Ni0.75Zn0.25FeO4-BiFeO3. J. Mater. Sci. 49, 4423–4438 (2014)

    Article  ADS  Google Scholar 

  21. S. Kumar, Ravikant, R. Kurchania, A. Kumar, Dielectric and Impedance spectroscopic study of lithium doped potassium tantalum niobium. Ceram. Int. 45, 17137–17143 (2019)

  22. A. Srivastava, A.K. Singh, O.N. Srivastava, Magnetic and dielectric properties of La and Ni Co-substituted BiFeO3 nanoceramics. Front. Phys. 282, 8 (2020)

    Google Scholar 

  23. F.S. Shanta, A.K. Matique Ullah, M.F. Kabir, A.N. Tamanna, structural, electrical and magnetic properties of Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0–0.3) Perovskites, J. Inorg. Organomet. Polym. Mater. 28, 2447–2454 (2018)

  24. A.M. Abdeen, Dielectric behaviour in Ni–Zn ferrites. J. Magn. Magn. Mater. 192, 121–129 (1999)

    Article  ADS  Google Scholar 

  25. P.P. Mohapatraa, S. Pittala, P. Dobbidi, Temperature dependent broadband dielectric, magnetic and electrical studies on Li1xMg2xFe5xO8 for microwave devices. J. Mater. Res. Technol. 9, 2992–3004 (2020)

    Article  Google Scholar 

  26. R.M. Henson, R.R. Zeyfang, K.V. Kiehl, Dielectric and electromechanical properties of (Li, Na)NbO3 ceramics. J. Am. Ceram. Soc. 60, 15–17 (1977)

    Article  Google Scholar 

  27. H. Du, W. Zhou, D. Zhu et al., Sintering, characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 lead-free ceramics. J. Am. Ceram. Soc. 91, 2903–2909 (2018)

    Article  Google Scholar 

  28. M. Rawat, K.L. Yadav, Study of structural, electrical, magnetic and optical properties of 0.65BaTiO3–0.35Bi0.5Na0.5TiO3-BiFeO3 multiferroic composite. J. Alloys Compd. 597, 188–199 (2014)

  29. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO3. J. Alloys Compd. 394, 292–302 (2005)

    Article  Google Scholar 

  30. S.T. Assar, E.H. El-Ghazzawy, H.F. Abosheiasha, Study on dielectric properties, electric modulus, and impedance spectroscopy of Ni–Ca ferrite nanoparticles. Mater. Chem. Phys. 287, 126336 (2022)

    Article  Google Scholar 

  31. L. Singh, U.S. Rai, K.D. Mandal, Dielectric, modulus and impedance spectroscopic studies of nanostructured CaCu0.70Mg0.30Ti4O12 electro-ceramic synthesized by modified sol–gel route. J. Alloys Compd. 555, 176–183 (2012)

    Article  Google Scholar 

  32. R. Padhy, S.K.S. Parashar, N. Rao, A.P. Chaudhuri, Negative temperature coefficient of resistance (NTCR) effect of nano Li2TiO3. IJPRET 8, 210–219 (2013). (ISSN: 2319-507X)

    Google Scholar 

  33. L. H. Omari, S. Sayouri, T. Lamcharfi, L. Hajji, H. Lemziouka, Impedance spectroscopy characterization of Pb0.96La0.04Fe0.03Ti0.97O3 nano-ceramics for negative coefficient thermistor (NCT). J. Mater. Environ. Sci. 7(3), 871–877 (2016) (ISSN: 2028–2508)

  34. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid. State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  35. A.K. Jonscher, Jonscher, Dielectric relaxation in solids. J. Phys. D Appl. Phys. 32, R57–R70 (1999)

    Article  ADS  Google Scholar 

  36. M. Stewart, M. G. Cain, Ferroelectric hysteresis measurement and analysis, NPL report CMMT(A) 152 (1999) (ISSN:1368-6550)

  37. A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectric with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    Article  ADS  Google Scholar 

  38. M. M. Devi, A. Anand, R.K. Veena, V.S. Veena, S. Bharadwaj, S. Sagar, Investigations on structural, ferroic and magnetodielectric properties of multiferroic Bi0.9Sm0.1FeO3 and its composite (0.9)Bi0.9Sm0.1FeO3/(0.1)La0.7Sr0.3MnO3 at room temperature. J. Mater. Sci. Mater. Electron. 32, 11640–11648 (2021)

  39. I. Yeung, R.M. Roshko, G. Williams, Arrott-plot criterion for ferromagnetism in disordered systems. Phys. Rev. B. 34, 3456–3457 (1986)

    Article  ADS  Google Scholar 

  40. A. Mukherjee, M. Banerjee, S. Basu, M.D. Mukadam, S.M. Yusuf, M. Pal, Enhanced magnetodielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticle. Mater. Chem. Phys 162, 140–148 (2015)

    Article  Google Scholar 

  41. A.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  42. G. Lawes, T. Kimura, C.M. Varma, M.A. Subramanian, N. Rogado, R.J. Cava, A.P. Ramirez, Magnetodielectric effects at magnetic ordering transitions. Prog. Solid State Chem. 37, 40–54 (2009)

    Article  Google Scholar 

  43. S.N. Tripathy, D.K. Pradhan, Phase transition and enhanced magneto-dielectric response in BiFeO3–DyMnO3 multiferroics. J. Appl. Phys. 117, 144103 (2015)

    Article  ADS  Google Scholar 

  44. R. Samad, M.U.D. Rather, K. Ashokan, D. Want, Magnetodielectric effect in rare earth doped BaTiO3–CoFe2O4 multiferroic composites. J. Alloys Compd. 794, 402–416 (2019)

    Article  Google Scholar 

  45. D.K. Pradhan, V.S. Puli, S. Kumari, S. Sahoo, P.T. Das, K. Pradhan, D.K. Pradhan, J.F. Scott, R.S. Katiyar, Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites. J. Phys. Chem. C 120, 1936–1944 (2016)

    Article  Google Scholar 

  46. R. Samad, M.U.D. Rather, K. Asokan, D. Want, Magneto-dielectric studies on multiferroic composites of Pr doped CoFe2O4 and Yb doped PbZrTiO3. J. Alloys Compd. 744, 453–462 (2018)

    Article  Google Scholar 

  47. H. Shen, Li. Shen, Z. Lin, M. Li, Y. Liu, Enhanced magnetic properties and magnetodielectric effects inBi2Fe4O9/BaTiO3 composite. J. Alloys Compd. 924, 166535 (2022)

    Article  Google Scholar 

  48. M.M. Devi, A. Anand, R.K. Veena, V.S. Veena, S. Sagar, Dielectric and magneto electric coupling properties of lead free (1 − x)Bi0.9Sm0.1FeO3/(x)La0.7Sr0.3MnO3 (x=0, 0.5, 0.1) composites at room temperature. Mater. Today Proc. 47, 1755–1759 (2021)

  49. R.T. Thomson, P. Jain, A.K. Cheetham, M.A. Carpenter, Elastic relaxation behaviour, Magnetoelastic coupling and order disorder process in multiferroic metal organic frame works. Phys. Rev. B 86, 214304 (2012)

    Article  ADS  Google Scholar 

  50. F.U. Wang, Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: insights from phase field modelling and simulation. J. Mater. Sci. 44, 5525–5534 (2009)

    Article  Google Scholar 

  51. S.N. Babu, K. Srinivas, T.B. Sankaram, Studies on lead-free multiferroic magnetoelectric composites. J. Magn. Magn. Mater. 321, 3764–3770 (2009)

    Article  ADS  Google Scholar 

  52. C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Kerala for providing financial assistance through University Junior Research Fellowship. Authors fully acknowledge CLIF Karyavattam, UGC-DAE Consortium for Scientific Research Indore, School of Pure and Applied Physics and IIUCNN, MG University, Kottayam, Institute of Nanoscience and Nanotechnology, University of Kashan Iran for providing various instrumentation facilities and we would also like to thank Sashank. S and Jisty Ann Jiji, Marian College Kuttikanam for their valuable help for some characterization part of the work.

Author information

Authors and Affiliations

Authors

Contributions

RKV: conceptualization, methodology, writing part of original manuscript. AA: joint experimental execution, methodology. MM: joint experimental execution, methodology. VSV: joint experimental execution, methodology. NK: resources. JC: methodology, writing part of original manuscript, support. SS: supervision, support, reviewing and editing. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to S. Sagar.

Ethics declarations

Conflict of interest

The authors state that they have no financial conflicts of interest or close personal ties that would have affected the research presented in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, R.K., Anand, A., Manjula devi, M. et al. Unraveling the structural, dielectric, magnetodielectric, multiferroic, and magnetic properties of (1 − x)LiNbO3xLa0.9Na0.1MnO3 (x = 0.1, 0.2, and 0.3) nanocomposite materials. Appl. Phys. A 129, 598 (2023). https://doi.org/10.1007/s00339-023-06864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06864-y

Keywords

Navigation