Skip to main content
Log in

Extraordinary sublinear hot electron current in plasmonic Au/polycrystalline TiO2 heterostructure

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single- and poly-crystalline semiconductors have quite different photonic and electrical properties. Benefiting from the much lower fabrication cost, poly-crystalline semiconductors attract considerable attention in large-scale applications. However, the effect of polycrystal on plasmonic metal/semiconductor heterostructure has long been ignored. Here, we fabricate Au-antennas/single-crystalline-TiO2 (Au/s-TiO2) and Au-antennas/polycrystalline TiO2 (Au/p-TiO2) samples, and compare the hot electron behaviors in them. An extraordinary sublinear photocurrent with light intensity for the Au/p-TiO2 is observed. Due to the abundant grain boundary of p-TiO2, the hot electron current changes from Schottky-barrier-limited to bulk-limited transport. Moreover, there is a larger Schottky barrier at Au and p-TiO2 interface than that on Au and s-TiO2 interface. This makes the hot carriers recombine mainly in the Au particles of Au/p-TiO2 when a negative bias is applied. These results are highly helpful to improve the performance of plasmonic metal/semiconductor heterostructure for large-scale applications, such as photocatalyst and photovoltaic cell, and are also beneficial for the design of plasmonic devices with special properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015)

    Article  ADS  Google Scholar 

  2. N. Rivera, I. Kaminer, Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020)

    Article  Google Scholar 

  3. S. Li et al., Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33, e2000086 (2021)

    Article  Google Scholar 

  4. A.M. Shrivastav, U. Cvelbar, I. Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 4, 70 (2021)

    Article  Google Scholar 

  5. A. Kumar, S. Kim, J.M. Nam, Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 138, 14509–14525 (2016)

    Article  Google Scholar 

  6. T.V. Shahbazyan, Landau damping of surface plasmons in metal nanostructures. Phys. Rev. B 94, 235431 (2016)

    Article  ADS  Google Scholar 

  7. X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013)

    Article  ADS  Google Scholar 

  8. Y. Zhang, W. Guo, Y. Zhang, W.D. Wei, Plasmonic photoelectrochemistry: in view of hot carriers. Adv. Mater. 33, e2006654 (2021)

    Article  Google Scholar 

  9. C. Liu et al., Dynamics and physical process of hot carriers in optoelectronic devices. Nano Energy 95, 106977 (2022)

    Article  Google Scholar 

  10. H. Tang et al., Plasmonic hot electrons for sensing, photodetection, and solar energy applications: a perspective. J. Chem. Phys. 152, 220901 (2020)

    Article  ADS  Google Scholar 

  11. Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31, e1901997 (2019)

    Article  Google Scholar 

  12. S. Shen et al., Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 98, 299–385 (2018)

    Article  Google Scholar 

  13. Z.-G. Sun et al., A promising visible-light photocatalyst: H2 plasma-activated amorphous-TiO2-supported Au nanoparticles. J. Catal. 375, 380–388 (2019)

    Article  Google Scholar 

  14. K. Kimura, S.-I. Naya, Y. Jin-nouchi, H. Tada, TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst’s activity. J. Phys. Chem. C 116, 7111–7117 (2012)

    Article  Google Scholar 

  15. C.M.M. Wu, E.S. Yang, W. Hwang, H.C. Card, Grain boundary effects on the electrical behavior of Al-Poly-Si schottky-barrier solar cells. IEEE Trans. Electron Devices 27, 687–692 (1980)

    Article  ADS  Google Scholar 

  16. R.H. Bube, Photoelectronic properties of semiconductors (Cambridge University Press, New York, 1992)

    Google Scholar 

  17. C.M. Wu, E.S. Yang, Modification of Schottky barrier height by surface grain boundaries of polycrystalline silicon. Appl. Phys. Lett. 37, 945–947 (1980)

    Article  ADS  Google Scholar 

  18. B. Du et al., Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions. Nano Energy 67, 104227 (2020)

    Article  Google Scholar 

  19. P. Pooja, B. Choudhuri, V. Saranyan, P. Chinnamuthu, Synthesis of coaxial TiO2/In2O3 nanowire assembly using glancing angle deposition for wettability application. Appl. Nanosci. 9, 529–537 (2019)

    Article  ADS  Google Scholar 

  20. Y. Xu et al., Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7, 1801433 (2019)

    Article  Google Scholar 

  21. M.M. AbdulGader, K.A. Wishah, DC I-V characteristics and steady-state photoconductivity of Au/Pb2CrO5/SnO2 sandwich-structure films under illumination in the visible region. J. Mater. Sci. 32, 1269–1275 (1997)

    Article  ADS  Google Scholar 

  22. M.D. Tabak, P.J. Warter, Sublinear photocurrents and surface recombination in cadmium sulfide crystals. Phys. Rev. 148, 982–990 (1966)

    Article  ADS  Google Scholar 

  23. W. Hwang, H.C. Card, E.S. Yang, Transition with grain size from electrode-limited to bulk-limited conduction in polycrystalline semiconductors. Appl. Phys. Lett. 36, 315–317 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC) (12204085, 12074054, 12274054) and the Fundamental Research Funds for the Central Universities (DUT21LK06).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and data analysis. Material preparation and data collection were performed by YF. The first draft of the manuscript was written by ZS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yurui Fang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Fang, Y. Extraordinary sublinear hot electron current in plasmonic Au/polycrystalline TiO2 heterostructure. Appl. Phys. A 129, 578 (2023). https://doi.org/10.1007/s00339-023-06861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06861-1

Keywords

Navigation