Skip to main content
Log in

Double plasmonic peak shift sensitivity: an analysis of a highly sensitive LSPR-PCF sensor for a diverse range of analyte detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, a unique combination of Silver (Ag) and Ga-doped ZnO (GZO) is used as plasmonic materials where both materials can be used for analyte detection. The sensor exhibits two distinct peaks within the same Refractive Index (RI) by which the sensing applications enhance. GZO is responsible for the first of the two peaks, while Ag contributes to the latter one. Along y-polarization, the highest value of double peak shift sensitivity (DPSS) known to date is found: 27,341.5 nm/RIU. The sensor also displays a high wavelength sensitivity (WS) of 27,360 nm/RIU and an amplitude sensitivity (AS) of 875.72 RIU−1. Additionally, the sensor demonstrates a high wavelength resolution of 6.032 × 10–6 and an amplitude resolution of 1.496 × 105. The sensor exhibits a linearity of R2 = 0.9973 and a figure of merit (FOM) of 243.4 RIU−1. Again, a ± 10 tolerance limit is tested without showing any significant change in confinement loss and resonant wavelength shift. The sensor is examined for a wide array of RI ranging from 1.27 to 1.41 extending its application to the detection of pharmaceutical products and various chemicals. Furthermore, machine learning regression algorithms have been explored in this work to find out the sensing parameters in RIs that were not numerically investigated. Random Forrest Regressor and K-Neighbors Regressor were found to be showing high accuracies of 90.176% and 95.54%, respectively. Using these two algorithms, the performance of the sensor in detecting various chemicals were predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Englebienne, A. van Hoonacker, M. Verhas, Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17(2–3), 255–273 (2003). https://doi.org/10.1155/2003/372913

    Article  Google Scholar 

  2. D. Paul, R. Biswas, [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain. Opt. Laser Technol. 101, 379–387 (2018). https://doi.org/10.1016/j.optlastec.2017.11.040

    Article  ADS  Google Scholar 

  3. J. Hammond, N. Bhalla, S. Rafiee, P. Estrela, Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors (Basel) 4(2), 172–188 (2014). https://doi.org/10.3390/bios4020172

    Article  Google Scholar 

  4. M. Rakibul Islam, M.M.I. Khan, F. Mehjabin, J. Alam Chowdhury, M. Islam, Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Res. Phys. 19, 103501 (2020). https://doi.org/10.1016/j.rinp.2020.103501

    Article  Google Scholar 

  5. Md.A. Mollah, Md.S. Islam, Novel single hole exposed-suspended core localized surface plasmon resonance sensor. IEEE Sens J (2020). https://doi.org/10.1109/JSEN.2020.3023975

    Article  Google Scholar 

  6. L.B. Sagle, L.K. Ruvuna, J.A. Ruemmele, R.P. van Duyne, Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 6(8), 1447–1462 (2011). https://doi.org/10.2217/nnm.11.117

    Article  Google Scholar 

  7. D.-K. Kim et al., Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal. Chem. 79(5), 1855–1864 (2007). https://doi.org/10.1021/ac061909o

    Article  Google Scholar 

  8. J.-H. Lee, B.-C. Kim, B.-K. Oh, J.-W. Choi, Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomedicine 9(7), 1018–1026 (2013). https://doi.org/10.1016/j.nano.2013.03.005

    Article  Google Scholar 

  9. Md. S. Islam et al., “A novel Zeonex based photonic sensor for alcohol detection in beverages,” in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), IEEE, 2017, pp. 114–118. https://doi.org/10.1109/ICTP.2017.8285905

  10. M.R. Islam, A.N.M. Iftekher, F.A. Mou, Md.M. Rahman, M.I.H. Bhuiyan, Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection. Appl. Phys. A 127(2), 109 (2021). https://doi.org/10.1007/s00339-020-04261-3

    Article  ADS  Google Scholar 

  11. M.R. Islam, A.N.M. Iftekher, F. Noor, M.R.H. Khan, Md.T. Reza, M.M. Nishat, AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum. Appl. Phys. A 128(1), 86 (2022). https://doi.org/10.1007/s00339-021-05220-2

    Article  ADS  Google Scholar 

  12. Md.M. Rahman, F.A. Mou, M.I.H. Bhuiyan, M.R. Islam, Refractometric THz sensing of blood components in a photonic crystal fiber platform. Braz. J. Phys. 52(2), 47 (2022). https://doi.org/10.1007/s13538-022-01054-2

    Article  ADS  Google Scholar 

  13. J. Sultana, M.R. Islam, M. Faisal, KMd. Abu-Talha, Md.S. Islam, Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission. Opt. Fiber Technol. 47, 55–60 (2019). https://doi.org/10.1016/j.yofte.2018.11.017

    Article  ADS  Google Scholar 

  14. Md.A. Islam, M.R. Islam, S. Siraz, M. Rahman, M.S. Anzum, F. Noor, Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk. Appl. Phys. A 127(5), 311 (2021). https://doi.org/10.1007/s00339-021-04472-2

    Article  ADS  Google Scholar 

  15. Md.A. Islam, M.R. Islam, A.M. Al Naser, F. Anzum, F.Z. Jaba, Square structured photonic crystal fiber based THz sensor design for human body protein detection. J. Comput. Electron. 20(1), 377–386 (2021). https://doi.org/10.1007/s10825-020-01606-2

    Article  Google Scholar 

  16. M.R.H. Khan, F.A.M. Ali, M.R. Islam, THz sensing of CoViD-19 disinfecting products using photonic crystal fiber. Sens. Biosensing Res. 33, 100447 (2021). https://doi.org/10.1016/j.sbsr.2021.100447

    Article  Google Scholar 

  17. M.R. Islam, Md.F. Kabir, KMd.A. Talha, Md.S. Arefin, Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt. Eng. 59(01), 1 (2020). https://doi.org/10.1117/1.OE.59.1.016113

    Article  Google Scholar 

  18. Md. Aminul Islam, M. Rakibul Islam, Md. Moinul Islam Khan, J.A. Chowdhury, F. Mehjabin, M. Islam, Highly birefringent slotted core photonic crystal fiber for THz wave propagation. Phys. Wave Phenom. 28(1), 58–67 (2020). https://doi.org/10.3103/S1541308X20010021

    Article  ADS  Google Scholar 

  19. Md.A. Islam, M.R. Islam, Z. Tasnim, R. Islam, R.L. Khan, E. Moazzam, Low-loss and dispersion-flattened octagonal porous core PCF for terahertz transmission applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 44(4), 1583–1592 (2020). https://doi.org/10.1007/s40998-020-00337-1

    Article  Google Scholar 

  20. M.R. Islam et al., Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity. Eur. Phys. J. Plus 136(2), 238 (2021). https://doi.org/10.1140/epjp/s13360-021-01220-6

    Article  Google Scholar 

  21. M.R. Islam et al., Design and analysis of a biochemical sensor based on surface plasmon resonance with ultra-high sensitivity. Plasmonics 16(3), 849–861 (2021). https://doi.org/10.1007/s11468-020-01355-9

    Article  Google Scholar 

  22. M. Rakibul Islam, A.N.M. Iftekher, K. Rakibul Hasan, Md.J. Nayen, S. Bin Islam, Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor. Appl. Opt. 59(11), 3296 (2020). https://doi.org/10.1364/AO.383352

    Article  ADS  Google Scholar 

  23. M.R. Islam et al., Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt. Quantum Electron. 53(2), 112 (2021). https://doi.org/10.1007/s11082-021-02748-8

    Article  Google Scholar 

  24. A.A. Rifat et al., Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015). https://doi.org/10.1109/LPT.2015.2432812

    Article  ADS  Google Scholar 

  25. S. Szunerits, V.G. Praig, M. Manesse, R. Boukherroub, Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19(19), 195712 (2008). https://doi.org/10.1088/0957-4484/19/19/195712

    Article  ADS  Google Scholar 

  26. M. Kanso, S. Cuenot, G. Louarn, Roughness effect on the SPR measurements for an optical fibre configuration: experimental and numerical approaches. J. Opt. A: Pure Appl. Opt. 9(7), 586–592 (2007). https://doi.org/10.1088/1464-4258/9/7/008

    Article  ADS  Google Scholar 

  27. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photon Rev 4(6), 795–808 (2010). https://doi.org/10.1002/lpor.200900055

    Article  ADS  Google Scholar 

  28. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  29. S. Selvendran, J. Divya, A. Sivanantha Raja, A. Sivasubramanian, S. Itapu, A reconfigurable surface-plasmon-based filter/sensor using d-shaped photonic crystal fiber. Micromachines (Basel) 13(6), 917 (2022). https://doi.org/10.3390/mi13060917

    Article  Google Scholar 

  30. M.R. Momota, Md.R. Hasan, Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. (Amst.) 76, 287–294 (2018). https://doi.org/10.1016/j.optmat.2017.12.049

    Article  ADS  Google Scholar 

  31. J. Han et al., Asymmetrical photonic crystal fiber based on the surface plasmon resonance sensor and analysis by the lower-birefringence peak method. Optik (Stuttg) 189, 121–129 (2019). https://doi.org/10.1016/j.ijleo.2019.05.070

    Article  ADS  Google Scholar 

  32. D. Kumar, M. Sharma, V. Singh, Surface plasmon resonance implemented silver thin film PCF sensor with multiple – hole microstructure for wide ranged refractive index detection. Mater. Today Proc. 62, 6590–6595 (2022). https://doi.org/10.1016/j.matpr.2022.04.598

    Article  Google Scholar 

  33. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials beyond gold and silver. Adv. Mater. 25(24), 3264–3294 (2013). https://doi.org/10.1002/adma.201205076

    Article  Google Scholar 

  34. K. M. M. Rahman, S. Rahman, Ultra-Wide Refractive Index Range Photonic Crystal Fiber Based Sensor with Gallium Doped Zinc Oxide Coating, in 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), IEEE, 2021, pp. 1–6. https://doi.org/10.1109/ICEEICT53905.2021.9667813

  35. T. Li, L. Zhu, X. Yang, X. Lou, L. Yu, A refractive index sensor based on h-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors 20(3), 741 (2020). https://doi.org/10.3390/s20030741

    Article  ADS  Google Scholar 

  36. V. Kaur, S. Singh, Design of D-shaped PCF-SPR sensor with dual coating of ITO and ZnO conducting metal oxide. Optik (Stuttg) 220, 165135 (2020). https://doi.org/10.1016/j.ijleo.2020.165135

    Article  ADS  Google Scholar 

  37. M. Rakibul Islam, A.N.M. Iftekher, M.S. Anzum, M. Rahman, S. Siraz, LSPR based double peak double plasmonic layered bent core PCF-SPR sensor for ultra-broadband dual peak sensing. IEEE Sens. J. 22(6), 5628–5635 (2022). https://doi.org/10.1109/JSEN.2022.3149715

    Article  ADS  Google Scholar 

  38. F. Wang, C. Liu, Z. Sun, T. Sun, B. Liu, P.K. Chu, A highly sensitive SPR sensors based on two parallel PCFs for low refractive index detection. IEEE Photonics J. 10(4), 1–10 (2018). https://doi.org/10.1109/JPHOT.2018.2856273

    Article  Google Scholar 

  39. K. Robards, P.R. Haddad, P.E. Jackson, High-performance Liquid chromatography—instrumentation and techniques, in Principles and Practice of Modern Chromatographic Methods. (Elsevier, 2004), pp.227–303. https://doi.org/10.1016/b978-0-08-057178-2.50008-x

    Chapter  Google Scholar 

  40. M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, A.M. Nasr, M.I. Abo el Maaty, Accurate radial basis function based neural network approach for analysis of photonic crystal fibers. Opt. Quantum Electron. 40(11–12), 891–905 (2008). https://doi.org/10.1007/s11082-009-9290-5

    Article  Google Scholar 

  41. S. Chugh, A. Gulistan, S. Ghosh, B.M.A. Rahman, Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414 (2019). https://doi.org/10.1364/OE.27.036414

    Article  ADS  Google Scholar 

  42. G. Fornarelli, L. Mescia, F. Prudenzano, M. de Sario, F. Vacca, A neural network model of erbium-doped photonic crystal fibre amplifiers. Opt. Laser Technol. 41(5), 580–585 (2009). https://doi.org/10.1016/j.optlastec.2008.10.010

    Article  ADS  Google Scholar 

  43. I. Abdelaziz, F. AbdelMalek, S. Haxha, H. Ademgil, H. Bouchriha, Photonic crystal fiber with an ultrahigh birefringence and flattened dispersion by using genetic algorithms. J. Lightwave Technol. 31(2), 343–348 (2013). https://doi.org/10.1109/JLT.2012.2226866

    Article  ADS  Google Scholar 

  44. M.R. Islam et al., Surface plasmon resonance based highly sensitive gold coated PCF biosensor. Appl. Phys. A 127(2), 118 (2021). https://doi.org/10.1007/s00339-020-04162-5

    Article  ADS  Google Scholar 

  45. A.A. Rifat et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017). https://doi.org/10.1016/j.snb.2016.11.113

    Article  Google Scholar 

  46. E.K.T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment, in Photonic Crystals Innovative Systems, Lasers and Waveguides. (InTech, 2012). https://doi.org/10.5772/35034

    Chapter  Google Scholar 

  47. S. Hassan et al., Comparative Analysis of Machine Learning Algorithms in Detection of Brain Tumor, in 2022 3rd International Conference on Big Data Analytics and Practices (IBDAP), IEEE, 2022, pp. 31–36. https://doi.org/10.1109/IBDAP55587.2022.9907433

  48. D. Maulud, A.M. Abdulazeez, A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 1(4), 140–147 (2020). https://doi.org/10.38094/jastt1457

    Article  Google Scholar 

  49. X. Yang, Y. Lu, B. Liu, J. Yao, Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2), 489–496 (2017). https://doi.org/10.1007/s11468-016-0289-z

    Article  Google Scholar 

  50. J.N. Dash, R. Jha, On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5), 1123–1131 (2015). https://doi.org/10.1007/s11468-015-9912-7

    Article  Google Scholar 

  51. G. Amouzad Mahdiraji et al., Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr. Opt. 33(1–2), 85–104 (2014). https://doi.org/10.1080/01468030.2013.879680

    Article  ADS  Google Scholar 

  52. R.F. Cregan et al., Single-mode photonic band gap guidance of light in air. Science (1979) 285(5433), 1537–1539 (1999). https://doi.org/10.1126/science.285.5433.1537

    Article  Google Scholar 

  53. S. Choi, J.-K. Park, Two-step photolithography to fabricate multilevel microchannels. Biomicrofluidics 4(4), 046503 (2010). https://doi.org/10.1063/1.3517230

    Article  Google Scholar 

  54. P. Ho, Chemical vapor deposition for microelectronics: principles, technology and applications Arthur Sherman (Noyes Publications, 1987). MRS Bull. 13(11), 78–78 (1988). https://doi.org/10.1557/S0883769400064046

    Article  Google Scholar 

  55. Md.S. Islam et al., Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26(23), 30347 (2018). https://doi.org/10.1364/OE.26.030347

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Ethics declarations

Conflict of interest

The authors also declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Iftekhar, A.N.M., Hassan, A.A. et al. Double plasmonic peak shift sensitivity: an analysis of a highly sensitive LSPR-PCF sensor for a diverse range of analyte detection. Appl. Phys. A 129, 571 (2023). https://doi.org/10.1007/s00339-023-06851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06851-3

Keywords

Navigation