Skip to main content

Advertisement

Log in

A novel graphene-based circular dual-core photonic crystal fiber pressure sensor with high sensitivity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper proposes a new circular hydrostatic pressure sensor based on a dual-core photonic crystal fiber (DC-PCF) with a graphene layer that can be used in industrial and medical applications. Numerical simulations are performed using COMSOL Multiphysics software, which solves problems using the finite element method (FEM). The coupling length and confinement loss of the proposed DC-PCF are calculated at a wavelength of 1.55 μm, which are 1.291 mm and 2.3362 × 10–3 dB/m, respectively. A linear relationship is observed between the applied pressure and the peak wavelength of the transmission spectrum. When pressure is applied to the proposed DC-PCF from 0 to 1000 MPa, the spectrum transmission shifts to blue wavelengths. The results show that the proposed DC-PCF with a length of 6 cm has the highest sensitivity of − 30 pm/MPa. A very low value of the limit of detection (LOD) parameter of 0.785 pPa is calculated. High sensitivity and low LOD make the sensor able to measure pressure changes with high accuracy. It is also shown that adding a graphene layer to the center of the DC-PCF sensor increases the birefringence, confinement loss, and stress component values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this research are available upon reasonable request from the authors.

References

  1. A. Ghaffar, Q. Li, M. Mehdi, B. Das, I. Hameed Alvi, Q. Xie, J. Ma, Infrared Phys. Technol. 130, 104585 (2023)

    Google Scholar 

  2. X. Zi, J. Chen, S. Zhang, X. Li, S. Wang, J. Wei, H. Lu, K. Sheng, Y. Niu, S. Gong, Opt. Commun. 518, 128337 (2022)

    Google Scholar 

  3. Y. Zheng, J. Yu, Z.-W. Zhu, B. Zeng, C. Yang, Optik 242, 167194 (2021)

    ADS  Google Scholar 

  4. B.M. Masum, S.M. Aminossadati, C.R. Leonardi, M.S. Kizil, Photonics Nanostruct. Fundam. Appl. 41, 100830 (2020)

    Google Scholar 

  5. S.F. Memon, R. Wang, B. Strunz, B.S. Chowdhry, J.T. Pembroke, E. Lewis, A review of optical fibre ethanol sensors: current state and future prospects. Sensors (2022). https://doi.org/10.3390/s22030950

    Article  Google Scholar 

  6. R. Tong, Y. Wang, K.-J. Zhao, X. Li, Y. Zhao, Opt. Laser Technol. 150, 107951 (2022)

    Google Scholar 

  7. C. Pendão, I. Silva, Optical fiber sensors and sensing networks: overview of the main principles and applications. Sensors (2022). https://doi.org/10.3390/s22197554

    Article  Google Scholar 

  8. A. Abbaszadeh, S. Makouei, S. Meshgini, Can. J. Phys. 100, 129–137 (2022)

    ADS  Google Scholar 

  9. A. Abbaszadeh, S. Makouei, S. Meshgini, Opt. Eng. 60, 077105 (2021)

    ADS  Google Scholar 

  10. B.K. Paul, K. Ahmed, M. Thillai Rani, K.P. Sai Pradeep, F.A. Al-Zahrani, Alex. Eng. J. 61, 2799–2806 (2022)

    Google Scholar 

  11. S.K. Pandey, J.B. Maurya, Y.K. Prajapati, Opt. Quant. Electron. 53, 724 (2021)

    Google Scholar 

  12. A. Abbaszadeh, S. Makouei, S. Meshgini, Adv. Electromagn. 10, 1–5 (2021)

    ADS  Google Scholar 

  13. S. Sen, M. Abdullah-Al-Shafi, M.A. Kabir, Sens. Bio-Sens. Res. 30, 100377 (2020)

    Google Scholar 

  14. M.S. Hossain, S. Sen, M.M. Hossain, Phys. Scr. 96, 055506 (2021)

    ADS  Google Scholar 

  15. K. Nyachionjeka, H. Tarus, K. Langat, Sci. Afr. 9, e00511 (2020)

    Google Scholar 

  16. S. Kabir, M.R.H. Khandokar, M.A.G. Khan, Opt. Laser Technol. 81, 84–89 (2016)

    ADS  Google Scholar 

  17. Z. Dashtban, M.R. Salehi, E. Abiri, Photonics Nanostruct. Fundam. Appl. 46, 100942 (2021)

    Google Scholar 

  18. A. Abbaszadeh, S. Makouei, S. Meshgini, Photonics Nanostruct. 44, 100917 (2021)

    Google Scholar 

  19. C. Tao, H. Wei, Y. Zhu, S. Krishnaswamy, Opt. Eng. 55, 057103 (2016)

    ADS  Google Scholar 

  20. L. Duan, Y. Lu, C. Hao, B. Wu, J. Yao, Proc. SPIE Int. Soc. Opt. Eng. 8924, 892425 (2013)

    Google Scholar 

  21. G.P. Mishra, D. Kumar, V.S. Chaudhary, S. Kumar, IEEE Sens. J. 22, 1265–1272 (2022)

    ADS  Google Scholar 

  22. R. Senthil, U. Anand, P. Krishnan, Appl. Phys. A 127, 282 (2021)

    ADS  Google Scholar 

  23. V.S. Chaudhary, D. Kumar, S. Kumar, IEEE Trans. Plasma Sci. 49, 3803–3810 (2021)

    ADS  Google Scholar 

  24. V.S. Chaudhary, D. Kumar, G.P. Mishra, S. Sharma, S. Kumar, IEEE Sens. J. 22, 8474–8481 (2022)

    ADS  Google Scholar 

  25. V.S. Chaudhary, D. Kumar, S. Kumar, IEEE Sens. J. 21, 17800–17807 (2021)

    ADS  Google Scholar 

  26. V.S. Chaudhary, D. Kumar, B.P. Pandey, S. Kumar, IEEE Sens. J. 23, 1012–1023 (2023)

    ADS  Google Scholar 

  27. V.S. Chaudhary, D. Kumar, S. Kumar, IEEE transactions on nanobioscience 22, 562-569 (2023)

  28. H.Y. Fu, C. Wu, M.L.V. Tse, L. Zhang, K.-C.D. Cheng, H.Y. Tam, B.-O. Guan, C. Lu, Appl. Opt. 49, 2639–2643 (2010)

    ADS  Google Scholar 

  29. D. Chen, G. Hu, L. Chen, IEEE Photonics Technol. Lett. 23, 1851–1853 (2011)

    ADS  Google Scholar 

  30. A.K.M.S.J. Choyon, R. Chowdhury, Optik 258, 168857 (2022)

    ADS  Google Scholar 

  31. E.A.A. Hagras, M.F.O. Hameed, S.S.A. Obayya, Optik 265, 169396 (2022)

    ADS  Google Scholar 

  32. S. Revathi, S.R. Inabathini, J. Pal, Optik 126, 3395–3399 (2015)

    ADS  Google Scholar 

  33. D. Pawar, C.N. Rao, R.K. Choubey, S.N. Kale, Appl. Phys. Lett. 108, 041912 (2016)

    ADS  Google Scholar 

  34. D. Chen, G. Hu, M.L.V. Tse, H.Y. Tam, Opt. Commun. 285, 2615–2619 (2012)

    ADS  Google Scholar 

  35. Z. Liu, M.-L.V. Tse, C. Wu, D. Chen, C. Lu, H.-Y. Tam, Opt. Express 20, 21749–21757 (2012)

    ADS  Google Scholar 

  36. V.S. Chaudhary, D. Kumar, R. Mishra, S. Sharma, Optik 210, 164497 (2020)

    ADS  Google Scholar 

  37. M.A. Khan, I.R. Hristovski, G. Marinaro, J. Kosel, IEEE Trans. Magn. 53, 1–4 (2017)

    Google Scholar 

  38. A.K. Paul, M.A. Mollah, M.Z. Hassan, N. Gomez-Cardona, E. Reyes-Vera, Photonics 8, 155 (2021)

    Google Scholar 

  39. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308–1308 (2008)

    ADS  Google Scholar 

  40. J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, J. Luo, Opt. Eng. 52, 106105 (2013)

    ADS  Google Scholar 

  41. W.-P. Huang, J. Opt. Soc. Am. A 11, 963–983 (1994)

    ADS  Google Scholar 

  42. S. Mittal, A. Saharia, Y. Ismail, F. Petruccione, A.V. Bourdine, O.G. Morozov, V.V. Demidov, J. Yin, G. Singh, M. Tiwari, Photonics 10, 230 (2023)

    Google Scholar 

  43. C. Wu, B.-O. Guan, Z. Wang, X. Feng, J. Lightwave Technol. 28, 1392–1397 (2010)

    ADS  Google Scholar 

  44. L. Gong, I.A. Kinloch, R.J. Young, I. Riaz, R. Jalil, K.S. Novoselov, Adv. Mater. 22, 2694–2697 (2010)

    Google Scholar 

  45. R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, Compos. Sci. Technol. 72, 1459–1476 (2012)

    Google Scholar 

  46. D. Meng, X. Zhang, D. Wang, C. Miao, J. Shi, X. Li, H. Bai, H. Chen, C. Guo, J. Yao, IEEE Sens. J. 22, 6606–6611 (2022)

    ADS  Google Scholar 

  47. J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Opt. Fiber Technol. 5, 305–330 (1999)

    ADS  Google Scholar 

  48. M.N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O'Driscoll, M. Watson, T. DelMonte, T.M. Monro, J.P. Dakin, D.J. Richardson, Microstructured fibres for sensing applications, SPIE, 2005

  49. R.T. Bise, D.J. Trevor, in Sol-gel Derived Microstructured Fiber: Fabrication and Characterization. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optica Publishing Group, Anaheim, California, 2005), pp. OWL6

  50. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R.C. Moore, K. Frampton, F. Koizumi, D.J. Richardson, T.M. Monro, Opt. Express 12, 5082–5087 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iran’s Elites Foundation Center with contract number 10.265 and the authors appreciate the help of this center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrand Rash-Ahmadi.

Ethics declarations

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, A., Rash-Ahmadi, S. A novel graphene-based circular dual-core photonic crystal fiber pressure sensor with high sensitivity. Appl. Phys. A 129, 570 (2023). https://doi.org/10.1007/s00339-023-06845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06845-1

Keywords

Navigation