Skip to main content
Log in

Customizable sound-absorbing metasurface with reserved reversible shape changing performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low-frequency sound-absorbing meta-surface is an eye-catching topic in scientific and engineering community. Numerous studies of low-frequency sound-absorbing meta-surface have been explored. However, an acoustic meta-surface with simultaneous low-frequency sound absorption and reversible shape changing property remains absent up till now. In this paper, we propose an acoustic meta-surface by coupling 15 sub-units to realize a desired low-frequency sound absorption. The measured energy attenuation of acoustic meta-surface is average up to 90% from 300 to 1000 Hz, well agreed with stimulated results. The sound absorption band of the designed structure can be customized through flexibly adjusting the sub-units. More surprisingly, the proposed acoustic meta-surface is capable of withstanding large loads and possesses a reversible shape changing property. The unique low-frequency sound absorption and the mechanical properties open interesting perspectives for the use of acoustic meta-surface in low-frequency noise control applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the Materials Cloud repository, https://doi.org/10.24435/materialscloud:27-zy.

References

  1. M. Yang, P. Sheng, Sound absorption structures: From porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83–114 (2017)

    Article  Google Scholar 

  2. B. Assouar, B. Liang, Y. Wu, Y. Li, J.C. Cheng, Y. Jing, Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018)

    Article  ADS  Google Scholar 

  3. Y. Li, B. Liang, Z.M. Gu, X.Y. Zou, J.C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013)

    Article  Google Scholar 

  4. Y. Li, X. Jiang, R.Q. Li, B. Liang, X.Y. Zou, L.L. Yin, J.C. Cheng, Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014)

    Article  ADS  Google Scholar 

  5. A. Arbabi, E. Arbabi, Y. Horie, S.M. Kamali, A. Faraon, Planar metasurface retroreflector. Nat. Photonics 11, 415 (2017)

    Article  ADS  Google Scholar 

  6. Y. Li, B. Liang, X. Tao, X.F. Zhu, X.Y. Zou, J.C. Cheng, Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012)

    Article  ADS  Google Scholar 

  7. D.C. Chen, X.F. Zhu, D.J. Wu, X.J. Liu, Broadband Airy-like beams by coded acoustic metasurfaces. Appl. Phys. Lett. 114, 053504 (2019)

    Article  ADS  Google Scholar 

  8. S.A. Cummer, D. Schurig, One path to acoustic cloaking. NJPh 9, 45–45 (2007)

    Article  ADS  Google Scholar 

  9. Q. Liang, Y. Cheng, J. He, J. Chang, T. Chen, D. Li, Ultra-broadband acoustic diode in open bend tunnel by negative reflective metasurface. Sci. Rep. 8, 1–6 (2018)

    Article  ADS  Google Scholar 

  10. X. Jiang, Y. Li, L. Zhang, Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. J. Acoust. Soc. Am. 141, 363–368 (2017)

    Article  ADS  Google Scholar 

  11. Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S.A. Cummer, Y. Jing, Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017)

    Article  ADS  Google Scholar 

  12. S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, Y. Li, Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am. 145, 254–262 (2019)

    Article  ADS  Google Scholar 

  13. Y. Shen, Y. Yang, X. Guo, Y. Shen, D. Zhang, Low-frequency anechoic metasurface based on coiled channel of gradient cross-section. Appl. Phys. Lett. 114, 083501 (2019)

    Article  ADS  Google Scholar 

  14. Y. Li, B.M. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016)

    Article  ADS  Google Scholar 

  15. K. Donda, Y. Zhu, S.W. Fan, L. Cao, Y. Li, B. Assouar, Extreme low-frequency ultrathin acoustic absorbing metasurface. Appl. Phys. Lett. 115, 173506 (2019)

    Article  ADS  Google Scholar 

  16. Q. Liang, P. Lv, J. He, Y. Wu, F. Ma, T. Chen, A controllable low-frequency broadband sound absorbing metasurface. J. Phys. D: Appl. Phys. 54, 355109 (2021)

    Article  ADS  Google Scholar 

  17. X. Cai, Q. Guo, G. Hu, J. Yang, Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105, 121901 (2014)

    Article  ADS  Google Scholar 

  18. J.Z. Song, P. Bai, Z.H. Hang, Y. Lai, Acoustic coherent perfect absorbers. NJPh 16, 033026 (2014)

    Article  ADS  Google Scholar 

  19. M. Yang, C. Meng, C.X. Fu, Y. Li, Z.Y. Yang, P. Sheng, Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015)

    Article  ADS  Google Scholar 

  20. C. Zhang, X. Hu, Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Phys. Rev. Appl. 6, 064025 (2016)

    Article  ADS  Google Scholar 

  21. X. Wu, C. Fu, X. Li, Y. Meng, Y. Gao, J. Tian, L. Wang, Y. Huang, Z. Yang, W. Wen, Low-frequency tunable acoustic absorber based on split tube resonators. Appl. Phys. Lett. 109, 043501 (2016)

    Article  ADS  Google Scholar 

  22. J. Guo, X. Zhang, Y. Fang, Z. Jiang, A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck. Appl. Phys. Lett. 117, 221902 (2020)

    Article  ADS  Google Scholar 

  23. C. Shao, Y. Zhu, H. Long, C. Liu, Y. Cheng, X. Liu, Metasurface absorber for ultra-broadband sound via over-damped modes coupling. Appl. Phys. Lett. 120, 083504 (2022)

    Article  ADS  Google Scholar 

  24. M. Yang, S. Chen, C. Fu, P. Sheng, Optimal sound-absorbing structures. Mater Horiz 4, 673–680 (2017)

    Article  Google Scholar 

  25. C.R. Liu, J.H. Wu, X. Chen, F. Ma, A thin low-frequency broadband metasurface with multi-order sound absorption. J. Phys. D: Appl. Phys. 52, 105302 (2019)

    Article  ADS  Google Scholar 

  26. X. Li, X. Yu, W. Zhai, Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels. Adv. Mater. 33, 2104552 (2021)

    Article  Google Scholar 

  27. Z. Ren, Y. Cheng, M. Chen, X. Yuan, D. Fang, A compact multifunctional metastructure for Low-frequency broadband sound absorption and crash energy dissipation. Mater. Des. 215, 110462 (2022)

    Article  Google Scholar 

  28. Z. Liang, J. Li, Extreme acoustic metasurfaceby coiling up space. Phys. Rev. Lett. 108, 114301 (2012)

    Article  ADS  Google Scholar 

  29. T. Frenzel, J.D. Brehm, T. Bückmann, R. Schittny, M. Kadic, M. Wegener, Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 103, 061907 (2013)

    Article  ADS  Google Scholar 

  30. Z. Liang, T. Feng, S. Lok, F. Liu, K.B. Ng, C.H. Chan, J. Wang, S. Han, S. Lee, J. Li, Space-coiling metasurfaceswith double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013)

    Article  ADS  Google Scholar 

  31. Y. Xie, B.I. Popa, L. Zigoneanu, S.A. Cummer, Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51575431 and 51675402).

Author information

Authors and Affiliations

Authors

Contributions

JH: Conceptualization Methodology, Writing—original Draft, Formal analysis. QL: Writing—review & Editing, Project administration, Funding acquisition. HH: Software. PL: Software. YW: Visualization. MW: Visualization. TC: Validation, Supervision.

Corresponding author

Correspondence to Qingxuan Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Liang, Q., He, H. et al. Customizable sound-absorbing metasurface with reserved reversible shape changing performance. Appl. Phys. A 129, 567 (2023). https://doi.org/10.1007/s00339-023-06844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06844-2

Keywords

Navigation