Skip to main content

Advertisement

Log in

Nanocrystalline TiO2 sensitized with CdS quantum dots for photoelectrochemical study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdS quantum dots sensitized TiO2 nanocrystalline photoanode was developed on conducting FTO substrates which act as working electrode in photoelectrochemical cells. Deposition process was conducted by applying ionic layer adsorption and SILAR process. The thickness of CdS quantum dots (QDs) are maintained by cycles of SILAR. The morphology and nature of TiO2/CdS photoanodes are characterized by XRD, UV–Vis., IR, PL, TEM and EDS analysis. XRD patterns indicate the presence of anatase TiO2 and CdS in TiO2/CdS quantum dots thin film (5 and 10 cycles) samples with crystallite size 11.19 nm. The optical band gap energies are 3.10, 3.05 and 2.78 eV for TiO2, TiO2/CdS quantum dots (5 and 10 cycles), respectively. The band gap energy of TiO2 found to be decreases with the sensitization of CdS quantum dots. The images of HR-TEM confirm the formation of a heterostructure between TiO2 and CdS quantum dots. The PEC performance for TiO2/CdS photoanode was analyzed using a 500 W tungsten lamp with light intensity of 30 mW/cm2 in the electrolyte iodide/polyiodide as a redox couple (0.5 M). CdS quantum dots sensitized TiO2 film as a photoanode for solar cells produces good power conversion efficiency of 1.32 and 3.52% for 5 and 10 cycles respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Giannouli, Current status of emerging PV technologies: a comparative study of dye-sensitized, organic, and perovskite solar cells: a review. Int. J. Photoenergy. (2021). https://doi.org/10.1155/2021/6692858

    Article  Google Scholar 

  2. A. Badawi, N. Al-Hosiny, S. Abdallah, The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode. Superlattices Microstruct. 81, 88–96 (2015). https://doi.org/10.1016/j.spmi.2015.01.024

    Article  ADS  Google Scholar 

  3. A. Aboulouarda, B. Gultekinb, M. Canc, B. Elhadadi, C. Zafer, S. Demic, Dye sensitized solar cells based on TiO2 nanoparticles synthesized hydrothermal sol-gel methods: a comparative study on photovoltaic performances. J. Mater. Res. Technol. 9(2), 1569–1577 (2020). https://doi.org/10.1016/j.jmrt.2019.11.083

    Article  Google Scholar 

  4. National Renewable Energy Laboratory (NREL), Golden, CO, 2020 January 2021, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20201228.pdf. Accessed 5 Jan 2021.

  5. N.T.K. Chung, P.T. Nguyen, H.T. Tung, D.H. Phu, A review quantum dot sensitized solar cell: photoanodes, counter electrodes, and electrolytes. Molecules 26, 2638 (2021). https://doi.org/10.3390/molecules26092638

    Article  Google Scholar 

  6. A. Sahua, A. Garg, A. Dixita, A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol. Energy 203, 210–239 (2020). https://doi.org/10.1016/j.solener.2020.04.044

    Article  ADS  Google Scholar 

  7. M. Parisi, S. Maranghi, L. Vesce, A. Sinicropi, A. Di Carlo, R. Basosi, Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: a long-term scenario approach. Renew. Sustain. Energy Rev. 121, 109703 (2020). https://doi.org/10.1016/j.rser.2020.109703

    Article  Google Scholar 

  8. G. Shilpa, P.M. Kumar, D.K. Kumar, P.R. Deepthi, V. Sadhu, R.R. Kakarla, Recent advances in the development of high efficiency QDSSCs: a review. Mater. Sci. Technol. 6, 533–546 (2023). https://doi.org/10.1016/j.mset.2023.05.001

    Article  Google Scholar 

  9. Z.L. Guo, J. Zhuang, Z. Ma, H.R. Xia, Q.X. Wen, X.Y. Luo, X. Wen, Enhanced electron extraction using ZnO/ZnO-SnO2 solid double-layer photoanode thin films for efficient dye sensitized solar cells. Thin Solid Films 684, 1–8 (2019). https://doi.org/10.1016/j.tsf.2019.05.034

    Article  ADS  Google Scholar 

  10. A.J. Nozik, Quantum dot solar cells. Physica E. Low Dimens. Syst. Nanostruct 14, 115–120 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0

    Article  ADS  Google Scholar 

  11. F.A. Farahani, A. Poro, M. Rezaee, M. Sameni, Enhancement in power conversion efficiency CdS quantum dot sensitized solar cells through a decrease in light reflection. Opt. Mater. 108, 110248 (2020). https://doi.org/10.1016/j.optmat.2020.110248

    Article  Google Scholar 

  12. J.J. Tian, Q.F. Zhang, L.L. Zhang, R. Gao, L.F. Shen, S.G. Zhang, X.H. Qu, G.Z. Cao, Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Nanoscale 5, 936–943 (2013). https://doi.org/10.1039/C3EE41056K

    Article  ADS  Google Scholar 

  13. J. Tyagi, H. Gupta, L.P. Purohit, Cascade structured ZnO/TiO2/CdS quantum dot sensitized solar cell. Solid State Sci. 102, 106176 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106176

    Article  Google Scholar 

  14. G.K.R. Senadeera, W.I. Sandamali, T. Jaseetharan, P. Sonar, V.P.S. Perera, Morphological and structural study on low cost SnO2 counter electrode and its applications in quantum dot sensitized solar cells with polysulfide electrolyte. Mater. Sci. Eng. B. 286, 116075 (2022). https://doi.org/10.1016/j.mseb.2022.116075

    Article  Google Scholar 

  15. J. Zhang, G. Xiao, F.X. Xiao, B. Liu, Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review. Mater. Chem. Front. 1, 231–250 (2017). https://doi.org/10.1039/C6QM00141F

    Article  Google Scholar 

  16. M. Revathi, A.P. Jeyakumar, Fabrication of TiO2/CdS heterostructure photoanodes and optimization of light scattering to improve the photovoltaic performance of dye-sensitized solar cells. J Mater Sci: Mater Electron. 32, 11921–11930 (2021). https://doi.org/10.1007/s10854-021-05822-9

    Article  Google Scholar 

  17. C.E. Pérez-García, S. Meraz-Dávila, G. Arreola-Jardón, F. de Moure-Flores, R. Ramírez-Bon, Y.V. Vorobiev, Characterization of PbS films deposited by successive ionic layer adsorption and reaction SILAR for CdS/PbS solar cells application. Mater. Res. Express 7, 015530 (2020). https://doi.org/10.1088/2053-1591/ab6b5c

    Article  ADS  Google Scholar 

  18. V. Etacheri, C. Di Valentinc, J. Schneider, D. Bahnemannd, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, review. J. Photochem. Photobio. C Photochem. Rev. 25, 1–29 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    Article  Google Scholar 

  19. J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, G. Cao, Enhanced Performance of CdS/CdSe quantum dot co-sensitized solar cells via homogeneous distribution of quantum dots in TiO2 Film. J. Phys. Chem. C 116, 18655–18662 (2012). https://doi.org/10.1021/jp3058838

    Article  Google Scholar 

  20. W.T. Sun, Y.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130(4), 1124–1125 (2008). https://doi.org/10.1021/ja0777741

    Article  Google Scholar 

  21. Z. Tang, Y. Tao, K. Wang, D. Bao, Z. Gao, H. Zhao, H. Zhang, Z. Wen, X. Sun, Lattice Mn2+ doped CdSe/CdS quantum dots for high-performance photoelectrochemical hydrogen evolution. Nano Energy 113, 108533 (2023). https://doi.org/10.1016/j.nanoen.2023.108533

    Article  Google Scholar 

  22. H. Yang, W. Fu, H. Sun, W. Zhang, S. Su, The enhanced photoelectrochemical performance of CdS quantum dots sensitized TiO2 nanotube/nanoparticle arrays hybrid nanostructures. Cryst. Eng. Comm. 16(30), 6955 (2014). https://doi.org/10.1039/C4CE00122B

    Article  Google Scholar 

  23. G. Zhu, L. Pan, T. Xu, Z. Sun, CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl. Mater. Interfaces 3(8), 3146–3151 (2011). https://doi.org/10.1021/am200648b

    Article  Google Scholar 

  24. R.A. Pawar, D.P. Dubal, S.V. Kite, K.M. Garadkar, V.M. Bhuse, Photoelectrochemical and photocatalytic activity of nanocrystalline TiO2 thin films deposited by chemical bath deposition method. J. Mater. Sci. Mater. Electron. 32(1), 19676–19687 (2021). https://doi.org/10.1007/s10854-021-06490-5

    Article  Google Scholar 

  25. Y. Cao, Y. Dong, H. Chen, D. Kuang, C. Su, CdS/CdSe co-sensitized hierarchical TiO2 nanofiber/ZnO nanosheet heterojunction photoanode for quantum dot-sensitized solar cells. RSC. Adv. 6(81), 7802 (2016). https://doi.org/10.1039/C6RA15481F

    Article  Google Scholar 

  26. B. Rezaei, N. Irannejad, A.A. Ensafi, N. Kazemifard, The impressive effect of eco-friendly carbon dots on improving the performance of dye-sensitized solar cells. Sol. Energy 182(1), 412–419 (2019). https://doi.org/10.1016/j.solener.2019.02.072

    Article  ADS  Google Scholar 

  27. R. Yang, R. Zhu, Y. Fan, L. Hua, B. Chen, Construction of an artificial inorganic leaf CdS-BiVO4 Z-scheme and its enhancement activities for pollutant degradation and hydrogen evolution. Catal. Sci. Technol. 9(1), 2426–2437 (2019). https://doi.org/10.1039/C9CY00475K

    Article  Google Scholar 

  28. X. Jiang, M. Sun, Z. Chen, A CdS/rGO QDs/TiO2 nanolawn photoanode co-decorated with reduced graphene oxide quantum dots and CdS nanoparticles with photoinduced cathodic protection characteristics of 316L SS and Cu. New J. Chem. 46(1), 19915–19926 (2022). https://doi.org/10.1039/D2NJ03430A

    Article  Google Scholar 

  29. M. Congiu, M. Bonomo, D. Girolamo, C. Malerba, M. Valentini, A. Mittiga, D. Dini, Towards an ink-based method for the deposition of ZnxCd1-xS buffer layers in CZTS solar cells. J. Mate. Sci. Mater. Electron. 31, 2575–2582 (2020). https://doi.org/10.1007/s10854-019-02796-7

    Article  Google Scholar 

  30. A.B. Muñoz-García, I. Benesperi, G. Boschloo, J.J. Concepcion, H.H. Delcamp, E.A. Gibson, G.J. Meyer, M. Pavone, H. Pettersson, M. Freitag M, Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50(22), 12450–12550 (2021). https://doi.org/10.1039/d0cs01336f

    Article  Google Scholar 

  31. H.K. Jun, M.A. Kareem, A.K. Arof, Efficiency improvement of CdS and CdSe quantum dot-sensitized solar cells by TiO2. J. Renew. Sust. Energy 6(2), 023107 (2014). https://doi.org/10.1063/1.4870996

    Article  Google Scholar 

  32. T. Zhao, Z. Xing, L. Shen, Y. Cao, M. Hu, S. Yang, W. Zhou, CdS Quantum dots/Ti3+, M-TiO2 nanobelts heterojunctions as efficient visible-light-driven photocatalysts. Mater. Res. Bull. 103(1), 114–121 (2018). https://doi.org/10.1016/j.materresbull.2018.03.029

    Article  Google Scholar 

  33. S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem. 21(13), 4945–4952 (2011). https://doi.org/10.1039/C0JM03508D

    Article  Google Scholar 

  34. S. Manchwari, J. Khatter, R.P. Chauhan, Enhanced photocatalytic efficiency of TiO2/CdS nanocomposites by manipulating CdS suspension on TiO2 nanoparticles. Inorg. Chem. Commun. 146, 110082 (2022). https://doi.org/10.1016/j.inoche.2022.110082

    Article  Google Scholar 

  35. S.B. Kakodkar, Synthesis, characterisation and photocatalytic activity of cadmium sulphide nanoparticles. Chem. Sci. Trans. 5, 75–78 (2016). https://doi.org/10.7598/cst2016.1143

    Article  Google Scholar 

  36. P. Nyamukamba, M.J. Moloto, H. Mungondori, Visible light-active CdS/TiOhybrid nanoparticles immobilized on polyacrylonitrile membranes for the photodegradation of dyes in water. J. Nanotechnol. (2019). https://doi.org/10.1155/2019/5135618

    Article  Google Scholar 

  37. P.R. Deshmukh, U.M. Patil, K.V. Gurav, S.B. Kulkarni, C.D. Lokhande, Chemically deposited TiO2/CdS bilayer system for photoelectrochemical properties. Bull. Mater. Sci. 35(12), 1181–1186 (2012). https://doi.org/10.1007/s12034-012-0402-7

    Article  Google Scholar 

  38. J. Deng, M. Wang, X. Song, J. Fang, Z. Yuan, Z. Yang, Synthesis of Zn-doped TiO2 nano-particles using metal Ti and Zn as raw materials and application in quantum dot sensitized solar cells. J. Alloy. Compd. 791(1), 371–379 (2019). https://doi.org/10.1016/j.jallcom.2019.03.306

    Article  Google Scholar 

  39. G.A. Nowsherwan, A. Zaib, A.A. Shah, M. Khan, S.S. Hussain, M.A. Shar, A. Alhazaa, Preparation and numerical optimization of TiO2:CdS thin films in double perovskite solar Cell. Energies 16, 900 (2023). https://doi.org/10.3390/en16020900

    Article  Google Scholar 

  40. A. Pieczynska, P. Mazierski, E. Siedlecka, Effect of synthesis method parameters on properties and photoelectrocatalytic activity under solar irradiation of TiO2 nanotubes decorated with CdS quantum dots. J. Env. Chem. Eng. 9(19), 104816 (2021). https://doi.org/10.1016/j.jece.2020.104816

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF-NEHU, Shillong for providing TEM facility. The authors are also thankful to DST-FIST Analytical Instrumentation Laboratory, Jaysingpur College, Jaysingpur for providing Instrumental Facilities.

Author information

Authors and Affiliations

Authors

Contributions

RAP: investigation, methodology, data curation, correcting original draft, SBT: resources and formal analysis, KMG: conceptualization, writing—review and editing. VMB: writing—review and editing, and supervision.

Corresponding authors

Correspondence to V. M. Bhuse or K. M. Garadkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, R.A., Teli, S.B., Shinde, H.M. et al. Nanocrystalline TiO2 sensitized with CdS quantum dots for photoelectrochemical study. Appl. Phys. A 129, 559 (2023). https://doi.org/10.1007/s00339-023-06833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06833-5

Keywords

Navigation