Skip to main content

Advertisement

Log in

Phase transition and thermal conductivity study of perovskite compounds SrBo3 (B = Zr and Hf) using PHONO3PY code for application as thermal barrier coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The phase transition and thermal conductivity of perovskite compounds SrBO3 (B = Zr and Hf), which are potential materials for thermal barrier coatings, were investigated using the PHONO3PY code. A novel perspective is presented, suggesting that the expansion of the octahedra formed by six oxygen ions can suppress the phase transitions in perovskites ABO3. This perspective also explains the phenomenon of phase transition suppression when SrZrO3 is doped with rare-earth elements (REEs). Furthermore, based on this perspective, specific REEs can be selected to effectively restrain the phase transitions of SrZrO3 and SrHfO3. For the orthorhombic SrZrO3 and SrHfO3 structures, La and Ce exhibit the highest efficiency, respectively. Regarding the cubic structure of SrZrO3, Ce is found to be the most effective. Lastly, in terms of reducing the thermal conductivity of SrHfO3, La and Pr demonstrate the greatest capability. These results are consistent with those obtained using Slack’s method. Additionally, a combination of La, Ce, Pr, Nd, Sm, Eu, Gd, and Tb is the most efficient in decreasing the thermal conductivity of SrHfO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. J.G. Thakare, C. Pandey, M.M. Mahapatra, R.S. Mulik, Thermal barrier coatings-a state of the art review. J. Phys. Chem. Solids 27(7), 1947–1968 (2021). https://doi.org/10.1007/s12540-020-00705-w

    Article  Google Scholar 

  2. J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo, M.I. Osendi, Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J. Am. Ceram. Soc. 85(12), 3031–3035 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

    Article  Google Scholar 

  3. N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), 280–284 (2002). https://doi.org/10.1126/science.1068609

    Article  ADS  Google Scholar 

  4. N. Uchida, A review of thermal barrier coatings for improvement in thermal efficiency of both gasoline and diesel reciprocating engines. Int. J. Engine Res. 23(1), 3–19 (2022). https://doi.org/10.1177/1468087420978016

    Article  Google Scholar 

  5. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Mechanisms controlling the durability of thermal barrier coatings. Progress in Mater. Sci. 46(5), 505–553 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7

    Article  Google Scholar 

  6. F.A. Zhao, H.Y. Xiao, Z.J. Liu, S. Li, X.T. Zu, A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7. Acta Mater. 121, 299–309 (2016). https://doi.org/10.1016/j.actamat.2016.09.018

    Article  ADS  Google Scholar 

  7. W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, Low thermal conductivity oxides. MRS Bull. 37(10), 917–922 (2012). https://doi.org/10.1557/mrs.2012.234

    Article  ADS  Google Scholar 

  8. D.R. Clarke, S.R. Phillpot, Thermal barrier coating materials. Mater. Today 8(6), 22–29 (2005). https://doi.org/10.1016/S1369-7021(05)70934-2

    Article  Google Scholar 

  9. R. Vaßen, X. Cao, F. Tietz, D. Basu, D. Stöver, Zirconates as new materials for thermal barrier coatings. J. Am. Ceram. Soc. 83(8), 2023–2028 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01506.x

    Article  Google Scholar 

  10. D.R. Clarke, M. Oechsner, N.P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37(10), 891–898 (2012). https://doi.org/10.1557/mrs.2012.232

    Article  ADS  Google Scholar 

  11. L. Chen, B. Li, J. Guo, Y. Zhu, J. Feng, High-entropy perovskite RETa3o9 ceramics for high-temperature environmental/thermal barrier coatings. J. Adv. Ceram. 11(4), 556–569 (2022). https://doi.org/10.1007/s40145-021-0556-0

    Article  Google Scholar 

  12. Z. Zhao, H. Chen, H. Xiang, F. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. J. Adv. Ceram. 9(3), 303–311 (2020). https://doi.org/10.1007/s40145-020-0368-7

    Article  Google Scholar 

  13. K. Wang, J. Zhu, H. Wang, K. Yang, Y. Zhu, Y. Qing, Z. Ma, L. Gao, Y. Liu, S. Wei, Y. Shu, Y. Zhou, J. He, Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 11(10), 1571–1582 (2022). https://doi.org/10.1007/s40145-022-0630-2

    Article  Google Scholar 

  14. Z. Zhao, H. Xiang, H. Chen, F. Dai, X. Wang, Z. Peng, Y. Zhou, High-entropy (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with good high temperature stability, low thermal conductivity, and anisotropic thermal expansivity. J. Adv. Ceram. 9(5), 595–605 (2020). https://doi.org/10.1007/s40145-020-0399-0

    Article  Google Scholar 

  15. Y. Dong, K. Ren, Q. Wang, G. Shao, Y. Wang, nteraction of multicomponent disilicate (Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7 with molten calcia-magnesia-aluminosilicate. J. Adv. Ceram. 11(1), 66–74 (2022). https://doi.org/10.1007/s40145-021-0517-7

    Article  Google Scholar 

  16. W. Liu, Y. Xie, Z. Deng, Y. Peng, J. Dong, Z. Zhu, D. Ma, L. Zhu, G. Zhang, X. Wang, Modification of ysz fiber composites by Al2TiO5 fibers for high thermal shock resistance. J. Adv. Ceram. 11(6), 922–934 (2022). https://doi.org/10.1007/s40145-022-0586-2

    Article  Google Scholar 

  17. Y. Han, R. Yu, H. Liu, Y. Chu, Synthesis of the superfine high-entropy zirconate nanopowders by polymerized complex method. J. Adv. Ceram. 11(1), 136–144 (2022). https://doi.org/10.1007/s40145-021-0522-x

    Article  Google Scholar 

  18. D. Liu, B. Shi, L. Geng, Y. Wang, B. Xu, Y. Chen, High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. J. Adv. Ceram. 11(6), 961–973 (2022). https://doi.org/10.1007/s40145-022-0589-z

    Article  Google Scholar 

  19. H. Xiang, Y. Xing, F. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram. 10(3), 385–441 (2021). https://doi.org/10.1007/s40145-021-0477-y

    Article  Google Scholar 

  20. Z. Wei, G. Meng, L. Chen, G. Li, M. Liu, W. Zhang, L. Zhao, Q. Zhang, X. Zhang, C. Wan, Z. Qu, J. Feng, L. Liu, H. Dong, Z. Bao, X. Zhao, X. Zhang, L. Guo, L. Wang, B. Cheng, W. Zhang, P. Xu, G. Yang, H. Cai, H. Cui, Y. Wang, F. Ye, Z. Ma, W. Pan, M. Liu, K. Zhou, C. Li, Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J. Adv. Ceram. 11(7), 985–1068 (2022). https://doi.org/10.1007/s40145-022-0581-7

    Article  Google Scholar 

  21. R.A. Miller, Current status of thermal barrier coatings—an overview. Surf. Coatings Technol. 30(1), 1–11 (1987). https://doi.org/10.1016/0257-8972(87)90003-X

    Article  MathSciNet  Google Scholar 

  22. M. Zhao, W. Pan, C. Wan, Z. Qu, Z. Li, J. Yang, Defect engineering in development of low thermal conductivity materials: a review. J. Eur. Ceram. Soc. 37(1), 1–13 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.07.036

    Article  Google Scholar 

  23. J. Che, X. Liu, X. Wang, Q. Zhang, G. Liang, S. Zhang, Fluctuating bonding leads to glass-like thermal conductivity in perovskite rare-earth tantalates. Acta Materialia 237, 118162 (2022). https://doi.org/10.1016/j.actamat.2022.118162

    Article  Google Scholar 

  24. W. Ma, D.E. Mack, R. Vaßen, D. Stöver, Perovskite-type strontium zirconate as a new material for thermal barrier coatings. J. Am. Ceram. Soc. 91(8), 2630–2635 (2008). https://doi.org/10.1111/j.1551-2916.2008.02472.x

    Article  Google Scholar 

  25. P. Zhang, W. Ma, C. Zhang, Y. Bai, Q. Hou, H. Liu, S. Yan, C. Liu, H. Dong, Sifting for substitutional elements that decrease thermal conductivity of a thermal barrier material. The European Physical Journal Plus 137(11), 1268 (2022). https://doi.org/10.1140/epjp/s13360-022-03485-x

    Article  ADS  Google Scholar 

  26. P. Zhang, W. Ma, Y. Li, C. Zhang, Y. Bai, H. Liu, S. Yan, C. Liu, H. Dong, Low thermal conductivity mechanism of co-doped ceramics for thermal barrier coatings applications. Journal of Materials Science 58, 4695–4706 (2023). https://doi.org/10.1007/s10853-023-08323-8

    Article  ADS  Google Scholar 

  27. W. Ma, P. Li, H. Dong, Y. Bai, J. Zhao, X. Fan, Y2O3 and Yb2O3 co-doped strontium hafnate as a new thermal barrier coating material. J.f Thermal Spray Technol. 23, 154–159 (2013). https://doi.org/10.1007/s11666-013-0006-9

    Article  ADS  Google Scholar 

  28. Ma, W., Mack, D., Malzbender, J., Vaßen, R., Stöver, D.: Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. J. Eur. Ceram. Soc. 28(16), 3071–3081 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.05.013

  29. W. Ma, W. Lun, H. Dong, L. Wang, F. Song, X. Zheng, Fundamental physical properties of Ta3O5 and Yb2O3 co-doped strontium zirconate for thermal barrier coating applications. Mater. Res. Innov. 15(5), 319–323 (2011). https://doi.org/10.1179/143307511X13109310554689

    Article  Google Scholar 

  30. W. Ma, D. Wang, H. Dong, W. Lun, W. He, X. Zheng, Double rare-earth oxides co-doped strontium zirconate as a new thermal barrier coating material. J.f Thermal Spray Technol. 22(2–3), 104–109 (2013)

    Article  ADS  Google Scholar 

  31. W. Ma, M.O. Jarligo, D.E. Mack, D. Pitzer, J. Malzbender, R. Vaßen, D. Stöver, New generation perovskite thermal barrier coating materials. J.f Thermal Spray Technol. 17(5–6), 831–837 (2008)

    Article  ADS  Google Scholar 

  32. W. Ma, Y. Gao, J. Zhang, Y. Bai, R. Jia, H. Dong, R. Wang, M. Bao, Phase composition, microstructure and thermophysical properties of the Sr\(_x\)(Zr\(_{0.9}\)Y\(_{0.05}\)Yb\(_{0.05}\))O\(_{1.95+x}\) ceramics. J. Eur. Ceram. Soc. 41(4), 2734–2745 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.12.031

    Article  Google Scholar 

  33. K. Jiang, S. Liu, Y. Li, Y. Li, Effects of re\(^{3+}\) ionic radius on monoclinic phase content of 8 mol% reo\(_{1.5}\) partially stabilized zro\(_{2}\) (re = yb, y, gd, and nd) powder compacts after annealing at high temperature. J. Am. Ceram. Soc. 97(3), 990–995 (2014). https://doi.org/10.1111/jace.12733

    Article  Google Scholar 

  34. K. Jiang, S. Liu, X. Wang, Low-thermal-conductivity and high-toughness ceo2–gd2o3 co–stabilized zirconia ceramic for potential thermal barrier coating applications. J. Eur. Ceram. Soc. 38(11), 3986–3993 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.065

    Article  Google Scholar 

  35. C. Jiang, C.R. Stanek, K.E. Sickafus, B.P. Uberuaga, First-principles prediction of disordering tendencies in pyrochlore oxides. Phys. Rev. B 79, 104203 (2009). https://doi.org/10.1103/PhysRevB.79.104203

    Article  ADS  Google Scholar 

  36. H.D. Megaw, The seven phases of sodium niobate. Ferroelectrics 7(1), 87–89 (1974). https://doi.org/10.1080/00150197408237956

    Article  ADS  Google Scholar 

  37. A.M. Glazer, The classification of tilted octahedra in perovskites. Acta Crystallographica Section B 28(11), 3384–3392 (1972). https://doi.org/10.1107/S0567740872007976

    Article  Google Scholar 

  38. U.D. Wdowik, K. Parlinski, S. Rols, T. Chatterji, Soft-phonon mediated structural phase transition in gete. Phys. Rev. B 89, 224306 (2014). https://doi.org/10.1103/PhysRevB.89.224306

    Article  ADS  Google Scholar 

  39. S. Amisi, P. Lambin, P. Ghosez, Structural and dynamical phase transitions of \({\rm nanbo }_{3}\) from first-principles calculations. Phys. Rev. Mater. 7, 024408 (2023). https://doi.org/10.1103/PhysRevMaterials.7.024408

    Article  Google Scholar 

  40. P.K. Schelling, S.R. Phillpot, Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J. Am. Ceram. Soc. 84(12), 2997–3007 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01127.x

    Article  Google Scholar 

  41. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  42. G.P. Srivastava, The Physics of Phonons (CRC Press, Boca Raton, FL, 2019)

    Book  Google Scholar 

  43. P.G. Klemens, The scattering of low–frequency lattice waves by static imperfections. Proc. Phys. Soc. Sect. A 68(12), 1113–1128 (1955). https://doi.org/10.1088/0370-1298/68/12/303

    Article  ADS  MATH  Google Scholar 

  44. L. Chaput, Direct solution to the linearized phonon boltzmann equation. Phys. Rev. Lett. 110, 265506 (2013). https://doi.org/10.1103/PhysRevLett.110.265506

    Article  ADS  Google Scholar 

  45. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scripta Materialia 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  46. A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in brillouin zones. Phys. Rev. B 91, 094306 (2015). https://doi.org/10.1103/PhysRevB.91.094306

    Article  ADS  Google Scholar 

  47. W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comp. Phys. Commun. 185, 1747–1758 (2014). https://doi.org/10.1016/j.cpc.2014.02.015

    Article  ADS  MATH  Google Scholar 

  48. W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, N. Mingo, Thermal conductivity of bulk and nanowire Mg2Si\(_{x}\)Sn\(_{1-x}\) alloys from first principles. Phys. Rev. B 86, 174307 (2012)

    Article  ADS  Google Scholar 

  49. D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coatings Technol. 163-164, 67–74 (2003). In: Proceedings of the 29th International Conference on Metallurgical Coatings and Thin Films. https://doi.org/10.1016/S0257-8972(02)00593-5

  50. D. Cahill, S. Watson, R. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131–6140 (1992). https://doi.org/10.1103/PhysRevB.46.6131

    Article  ADS  Google Scholar 

  51. G.A. Slack, Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids 34(2), 321–335 (1973). https://doi.org/10.1016/0022-3697(73)90092-9

    Article  ADS  Google Scholar 

  52. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  53. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  54. H. Babaei, R. Guo, A. Hashemi, S. Lee, Machine-learning-based interatomic potential for phonon transport in perfect crystalline si and crystalline si with vacancies. Phys. Rev. Materials 3, 074603 (2019). https://doi.org/10.1103/PhysRevMaterials.3.074603

    Article  ADS  Google Scholar 

  55. X. Qian, S. Peng, X. Li, Y. Wei, R. Yang, Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon. Mater. Today Physics 10, 100140 (2019). https://doi.org/10.1016/j.mtphys.2019.100140

    Article  Google Scholar 

  56. P. Korotaev, A. Shapeev, Lattice dynamics of Yb\(_{x}\)Co\(_{4}\)Sb\(_{12}\) skutterudite by machine-learning interatomic potentials: Effect of filler concentration and disorder. Phys. Rev. B 102, 184305 (2020). https://doi.org/10.1103/PhysRevB.102.184305

    Article  ADS  Google Scholar 

  57. H. Liu, X. Qian, H. Bao, C.Y. Zhao, X. Gu, High-temperature phonon transport properties of SnSe from machine-learning interatomic potential. Journal of Physics: Condensed Matter 33(40), 405401 (2021). https://doi.org/10.1088/1361-648X/ac13fd

    Article  Google Scholar 

  58. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  59. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  60. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994). https://doi.org/10.1103/PhysRevB.49.16223

    Article  ADS  Google Scholar 

  61. T. Tadano, Y. Gohda, S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. Journal of Physics: Condensed Matter 26(22), 225402 (2014). https://doi.org/10.1088/0953-8984/26/22/225402

    Article  Google Scholar 

  62. A.H. MacDonald, S.H. Vosko, P.T. Coleridge, Extensions of the tetrahedron method for evaluating spectral properties of solids. J. Phys. C Solid State Phys. 12(15), 2991 (1979). https://doi.org/10.1088/0022-3719/12/15/008

    Article  ADS  Google Scholar 

  63. Z. Li, Y. Xing, S. Watanabe, W. Pan, The effect of phonon anharmonicity on the lattice thermal conductivity of rare-earth pyrochlores: A first-principles study. Ceram. Int. 46(7), 9947–9951 (2020). https://doi.org/10.1016/j.ceramint.2019.12.168

    Article  Google Scholar 

  64. G.A. Slack, The thermal conductivity of nonmetallic crystals. Solid State Physics, vol. 34, pp. 1–71. Academic Press (1979). https://doi.org/10.1016/S0081-1947(08)60359-8. https://www.sciencedirect.com/science/article/pii/S0081194708603598

  65. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84(9), 4891–4904 (1998). https://doi.org/10.1063/1.368733

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52062040, 52062041), Science and Technology Projects of Inner Mongolia Autonomous Region (2021PT0008, 2022ZD02, 2020GG0209), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT22080, NMGIRT2319) and Basic Scientific Research Expenses Program of Universities Directly under Inner Mongolia Autonomous Region (JY20220041, JY20220062). The authors are grateful to Dr. Xueping Zhao and Dr. Xiaohu Hou from the analysis and test center of Inner Mongolia University of Technology for their valuable discussion. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Wen Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Ma, W., Zhang, C. et al. Phase transition and thermal conductivity study of perovskite compounds SrBo3 (B = Zr and Hf) using PHONO3PY code for application as thermal barrier coatings. Appl. Phys. A 129, 601 (2023). https://doi.org/10.1007/s00339-023-06831-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06831-7

Keywords

Navigation