Skip to main content
Log in

Dual functional SILAR deposited NiWO4 electrocatalyst for non-enzymatic glucose sensing and hydrogen evolution reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An effective route towards improving the electrocatalytic performance of materials is the synthesis of nanocrystalline, porous, and layer-structured materials. Herein, porous nickel tungstate (NiWO4) film electrode was prepared on stainless steel (SS) substrate by inexpensive successive ionic layer adsorption and reaction (SILAR) method. This method provides a binder-free, porous, and nanocrystalline thin layer on a SS substrate. The electrocatalytic performance of the nanocrystalline NiWO4 electrocatalyst was evaluated for enzymeless glucose measurement and water-splitting application. This electrocatalyst exhibited excellent sensitivity of 9731 μA mM−1 cm−2 within the linear range of 25–325 μM. Further, the glucose concentrations present in human blood samples were measured using the proposed nanocrystalline NiWO4 electrocatalyst. Also, hydrogen evolution reaction, the electrocatalyst exhibited 171 mV of overpotential at 10 mA cm−2 with a Tafel slope of 70 mV dec−1. Further, chronopotentiometry study was carried out at 100 mA cm−2 and it showed 94% retention after 24 h. These findings greatly promote the outstanding electrocatalytic performance of nanocrystalline and porous NiWO4 electrocatalysts that outline their applicability for electrochemical catalysis purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available from corresponding author.

References

  1. W. Yanga, S. Chen, Chem. Eng. J. 393, 124726 (2020). https://doi.org/10.1016/j.cej.2020.124726

    Article  Google Scholar 

  2. W.-C. Lee, K.-B. Kim, N.G. Gurudatt, K.K. Hussain, C.S. Choi, D.-S. Park, Y.-B. Shim, Biosens. Bioelectron. 130, 48–54 (2019). https://doi.org/10.1016/j.bios.2019.01.028

    Article  Google Scholar 

  3. F. Xiea, T. Liu, L. Xie, X. Sun, Y. Luo, Sens. Actuators B Chem. 255, 2794–2799 (2018). https://doi.org/10.1016/j.snb.2017.09.095

    Article  Google Scholar 

  4. K.-N. Kang, S.-I. Kim, J.-C. Yoon, J. Kim, C. Cahoon, J.-H. Jang, ACS Appl. Mater. Interfaces. 14, 33013–33023 (2022). https://doi.org/10.1021/acsami.2c04471

    Article  Google Scholar 

  5. Y.Y. Li, P. Kang, H.Q. Huang, Z.G. Liu, G. Li, Z. Guo, X.J. Huang, Sens. Actuators B Chem. 307, 127639 (2020). https://doi.org/10.1016/j.snb.2019.127639

    Article  Google Scholar 

  6. R. Madhu, V. Veeramani, S.-M. Chen, A. Manikandan, A.-Y. Lo, Y.-L. Chueh, A.C.S. Appl, Mater. Interfaces. 7, 15812–15820 (2015). https://doi.org/10.1021/acsami.5b04132

    Article  Google Scholar 

  7. A. Koyappayil, S. Berchmans, M.H. Lee, Colloids Surfaces B Biointerfaces 189, 110840 (2020). https://doi.org/10.1016/j.colsurfb.2020.110840

    Article  Google Scholar 

  8. S.B. Jadhav, D.B. Malavekar, R.N. Bulakhe, U.M. Patil, I. Insik, C.D. Lokhande, P.N. Pawaskar, Surf. Interfaces. 23, 101018 (2021). https://doi.org/10.1016/j.surfin.2021.101018

    Article  Google Scholar 

  9. R. Zahra, E. Pervaiz, M. Yang, O. Rabi, Z. Saleem, M. Ali, S. Farrukh, Int. J. Hydrog. Energy. 45, 24518–24543 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.236

    Article  Google Scholar 

  10. W. Hua, H.-H. Sun, F. Xu, J.-G. Wang, Rare Met. 39, 335–351 (2020). https://doi.org/10.1007/s12598-020-01384-7

    Article  Google Scholar 

  11. D.B. Malavekar, V.C. Lokhande, D.J. Patil, S.B. Kale, U.M. Patil, T. Ji, C.D. Lokhande, J. Colloid Interface Sci. 609, 734–745 (2022). https://doi.org/10.1016/j.jcis.2021.11.074

    Article  ADS  Google Scholar 

  12. C. Kung, C. Lin, Y. Lai, R. Vittal, K. Ho, Biosens Bioelectron 27, 125–131 (2011). https://doi.org/10.1016/j.bios.2011.06.033

    Article  Google Scholar 

  13. Q. Shao, Y. Wang, S. Yang, K. Lu, Y. Zhang, C. Tang, J. Song, Y. Feng, L. Xiong, Y. Peng, Y. Li, H.L. Xin, X. Huang, ACS Nano 12, 11625–11631 (2018). https://doi.org/10.1021/acsnano.8b06896

    Article  Google Scholar 

  14. W.L. Kwong, C.C. Lee, J. Messinger, J. Phys. Chem. C. 121, 284–292 (2017). https://doi.org/10.1021/acs.jpcc.6b09050

    Article  Google Scholar 

  15. S. Gao, A. Zavabeti, B. Wang, R. Ren, C. Yang, Z. Liu, Y. Wang, A.C.S. Appl, Nano Mater. 4, 4542–4551 (2021). https://doi.org/10.1021/acsanm.1c00134

    Article  Google Scholar 

  16. J. Chang, K. Li, Z. Wu, J. Ge, C. Liu, W. Xing, A.C.S. Appl, Mater. Interfaces 10, 26303–26311 (2018). https://doi.org/10.1021/acsami.8b08068

    Article  Google Scholar 

  17. S.-S. Lu, X. Shang, L.-M. Zhang, B. Dong, W.-K. Gao, F.N. Dai, B. Liu, Y.-M. Chai, C.-G. Liu, Appl. Surf. Sci 445, 445–453 (2018). https://doi.org/10.1016/j.apsusc.2018.03.177

    Article  ADS  Google Scholar 

  18. F. Mollarasouli, M.R. Majidi, K.A. Zeynali, J Taiwan Inst Chem Eng. 118, 301–308 (2021). https://doi.org/10.1016/j.jtice.2021.01.003

    Article  Google Scholar 

  19. S. Mani, V. Vediyappan, S.-M. Chen, R. Madhu, V. Pitchaimani, J.-Y. Chang, S.-B. Liu, Scientific report 6, 1–8 (2016). https://doi.org/10.1038/srep24128

    Article  Google Scholar 

  20. J.M.V. Nsanzimana, Y. Peng, M. Miao, V. Reddu, W. Zhang, H. Wang, B.Y. Xia, X. Wang, A.C.S. Appl, Nano Mater 3, 1228–1235 (2018). https://doi.org/10.1021/acsanm.7b00383

    Article  Google Scholar 

  21. C. Wei, S. Sun, D. Mandler, X. Wang, S.Z. Qiao, Z.J. Xu, Chem. Soc. Rev. 48, 2518–2534 (2019). https://doi.org/10.1039/C8CS00848E

    Article  Google Scholar 

  22. W. Li, J. Lv, W. Cai, X. Chen, Q. Huang, L. Wang, B. Wang, Chem. Mater. (2023). https://doi.org/10.1021/acs.chemmater.2c03723

    Article  Google Scholar 

  23. S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Chem. Cent. J. 7, 80 (2013). https://doi.org/10.1186/1752-153X-7-80

    Article  Google Scholar 

  24. P. Sharma, M. Minakshi, J. Whale, A. Jean-Fulcrand, G. Garnweitner, Nanomaterials 11, 580 (2021). https://doi.org/10.3390/nano11030580

    Article  Google Scholar 

  25. G. Poirier, Y. Messaddeq, S.J.L. Ribeiro, M. Poulain, J. Solid State Chem 178, 1533–1538 (2005). https://doi.org/10.1016/j.jssc.2004.10.032

    Article  ADS  Google Scholar 

  26. P.R. Kasturi, S. Shanmugapriya, M. Elizabeth, K. Athira, R.K. Selvan, J Mater Sci: Mater Electron 31, 2378–2387 (2020). https://doi.org/10.1007/s10854-019-02773-0

    Article  Google Scholar 

  27. E.S. Babu, B.J. Rani, G. Ravi, R. Yuvakkumar, R.K. Guduru, V. Ganesh, S. Kim, Mater. Lett 220, 209–212 (2018). https://doi.org/10.1016/j.matlet.2018.03.018

    Article  Google Scholar 

  28. X. Xing, J. Wang, J. Mater. Sci. Mater. Electron 27, 11613–11622 (2016). https://doi.org/10.1007/s10854-016-5293-8

    Article  Google Scholar 

  29. A. Bhardwaj, I.-H. Kim, L. Mathur, J.-Y. Park, S.-J. Song, J. Hazard. Mater 403, 123797 (2021). https://doi.org/10.1016/j.jhazmat.2020.123797

    Article  Google Scholar 

  30. Y. Huang, Y. Gao, C. Liu, Z. Cao, Y. Wang, Z. Li, Y. Yan, M. Zhang, G. Cao, J. Phys. Chem. C 123, 30067–30076 (2019). https://doi.org/10.1021/acs.jpcc.9b08448

    Article  Google Scholar 

  31. Y. Zhang, Z. Jin, Catal. Sci. Technol. 9, 1944–1960 (2019). https://doi.org/10.1039/C8CY02611D

    Article  Google Scholar 

  32. S. Wang, C. Wang, G. Wei, H. Xiao, N. An, Y. Zhoua, C. An, J. Zhang, Colloids Surf. A 509, 252–258 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.076

    Article  ADS  Google Scholar 

  33. A. Ibrahim, E.M. Sodki, A. Umar, A. Amine, R. Kumar, M. Al-Assiri, A.E. Al-Salami, S. Baskoutas, New J. Chem. 42, 964–973 (2018). https://doi.org/10.1039/C7NJ03253F

    Article  Google Scholar 

  34. R. Ahmad, M. Khan, N. Tripathy, M. Iqbal, R. Khan, A. Khosla, J. Electrochem. Soc. 167, 107504 (2020). https://doi.org/10.1149/1945-7111/ab9757

    Article  ADS  Google Scholar 

  35. Y. Zhang, D. Zhao, W. Zhu, W. Zhang, Z. Yue, J. Wang, R. Wang, D. Zhang, J. Wang, G. Zhang, Sens. Actuators, B 255, 416–423 (2018). https://doi.org/10.1016/j.snb.2017.08.078

    Article  Google Scholar 

  36. G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan, W. Pu, J. Zhang, L. Li, Nanoscale Res. Lett. 13, 1–10 (2018). https://doi.org/10.1186/s11671-017-2406-0

    Article  ADS  Google Scholar 

  37. C. Heyser, R. Schrebler, P. Grez, J. Electroanal. Chem. 832, 189–195 (2018). https://doi.org/10.1016/j.jelechem.2018.10.054

    Article  Google Scholar 

  38. S. Sedaghat, C.R. Piepenburg, A. Zareei, Z. Qi, S. Peana, H. Wang, R. Rahimi, A.C.S. Appl, Nano Mater. 3, 5260–5270 (2020). https://doi.org/10.1021/acsanm.0c00659

    Article  Google Scholar 

  39. X. Luo, M. Huang, D. He, M. Wang, Y. Zhang, P. Jiang, Analyst 143, 2546–2554 (2018). https://doi.org/10.1039/C8AN00668G

    Article  ADS  Google Scholar 

  40. M. Saraf, K. Natarajan, M.M.M. Shaikh, New J. Chem. 41, 9299–9313 (2017). https://doi.org/10.1039/C7NJ01519D

    Article  Google Scholar 

  41. W. Li, H. Qi, B. Wang, Q. Wang, S. Wei, X. Zhang, Y. Wang, L. Zhang, X. Cui, Microchim. Acta 185, 1–9 (2018). https://doi.org/10.1039/C7NJ01519D

    Article  ADS  Google Scholar 

  42. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Chem. Commun. 52, 1486–1489 (2016). https://doi.org/10.1039/C5CC08064A

    Article  Google Scholar 

  43. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, Y. Liang, ACS Catal. 6, 580–588 (2016). https://doi.org/10.1039/C7NJ01519D

    Article  Google Scholar 

  44. L. Jinlong, L. Tongxiang, J. Solid State Chem. 243, 106–110 (2016). https://doi.org/10.1016/j.jssc.2016.08.017

    Article  ADS  Google Scholar 

  45. Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, ACS Catal. 7, 2357–2366 (2017). https://doi.org/10.1021/acscatal.6b03192

    Article  Google Scholar 

  46. C. Zhu, A. Wang, W. Xiao, D. Chao, X. Zhang, N.H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H. Fan, Adv. Mater. 30, 1–8 (2018). https://doi.org/10.1002/adma.201705516

    Article  ADS  Google Scholar 

  47. Q. Chen, R. Wang, M. Yu, Y. Zeng, F. Lu, X. Kuang, X. Lu, Electrochim. Acta. 247, 666–673 (2017). https://doi.org/10.1016/j.electacta.2017.07.025

    Article  Google Scholar 

  48. Z. Xing, Q. Li, D. Wang, X. Yang, X. Sun, Electrochim. Acta. 191, 841–845 (2016). https://doi.org/10.1016/j.electacta.2015.12.174

    Article  Google Scholar 

  49. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S.J. Pennycook, B.-J. Hwang, H. Dai, Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms5695

    Article  Google Scholar 

  50. J. Jiang, M. Gao, W. Sheng, Y. Yan, Angew. Chem. Int. 128, 15466–15471 (2016). https://doi.org/10.1002/ange.201607651

    Article  ADS  Google Scholar 

  51. S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik, A.C.S. Appl, Mater. Interfaces 9, 33766–33774 (2017). https://doi.org/10.1021/acsami.7b0798

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to D. Y. Patil Education Society, (Institution Deemed to be University) Kolhapur-416006 (India), for giving financial support through research project sanction No. DYPES/DU/R&D/3099. In addition, S. B. Jadhav acknowledges the Chhatrapati Shahu Maharaj Research Training and Human Development (SARTHI), Government of Maharashtra, India for awarding Senior Research Fellow (SRF). Authors are also thankful to DST-FIST analytical Instrumental laboratory Jaysingpur college, Jaysingpur for experimental and characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

SJ and DM equally contributed for this work.

Corresponding author

Correspondence to P. N. Pawaskar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 576 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S.B., Malavekar, D.B., Patil, D.J. et al. Dual functional SILAR deposited NiWO4 electrocatalyst for non-enzymatic glucose sensing and hydrogen evolution reaction. Appl. Phys. A 129, 524 (2023). https://doi.org/10.1007/s00339-023-06798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06798-5

Keywords

Navigation