Skip to main content

Advertisement

Log in

Enhanced energy storage performance of KNN-BLZS dielectric ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Exploring high-performance energy storage dielectric ceramics for pulse power applications is paramount concern for a multitude of researchers. In this work, a (1 – x)K0.5Na0.5NbO3-xBi0.5La0.5(Zn0.5Sn0.5)O3 ((1–x)KNN-xBLZS) lead-free relaxor ceramic was successfully synthesized by a conventional solid-reaction method. X-ray diffraction and Raman spectra confirm the perovskite structure of the ceramics. With the addition of BLZS, the crystal growth is suppressed, the ceramic resistivity increases, and the relaxation properties of ceramics are enhanced. By optimizing the composition to x = 0.12, we achieved a significant ΔP of 12.8 μC/cm2, a Pmax of 14.6 μC/cm2, and a Pr of 1.8 μC/cm2. The resulting Wrec reached 0.84 J/cm3, accompanied by an outstanding efficiency (η) of 76%, superior frequency reliability, and robust thermal stability. Owing to these exceptional properties, the 0.88 KNN-0.12 BLZS ceramic demonstrates great potential for pulse power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. W. Jin, G. Maduraiveeran, Mater. Today Energy 13, 64 (2019)

    Article  Google Scholar 

  2. Z. Yang, H. Du, L. Jin, D. Poelman, J. Mater. Chem. A 9, 18026 (2021)

    Article  Google Scholar 

  3. J. Ma, D. Zhang, F. Ying, X. Li, L. Li, Yu. Shun Guo, J.Z. Huan, J. Wang, S.-T. Zhang, ACS Appl. Mater. Interfaces 14, 19704 (2022)

    Article  Google Scholar 

  4. J. Li, H. Yang, Y. Lin, X. Gan, J. Alloys Compd. 909, 164579 (2022)

    Article  Google Scholar 

  5. V. Veerapandiyan, F. Benes, T. Gindel, M. Deluca, Materials 13, 5742 (2020)

    Article  ADS  Google Scholar 

  6. L. Tan, Y. Wang, J. Phys. Chem. Solids 151, 109797 (2021)

    Article  Google Scholar 

  7. X. Dong, X. Li, X. Chen, H. Chen, C. Sun, J. Shi, F. Pang, H. Zhou, Ceram. Int. 47, 3079 (2021)

    Article  Google Scholar 

  8. X. Wang, X. Wu, D. Yang, J. Yin, J. Wu, Chem. Eng. J. 447, 137494 (2022)

    Article  Google Scholar 

  9. K. Han, N. Luo, S. Mao, F. Zhuo, X. Chen, L. Liu, C. Hu, H. Zhou, X. Wang, Y. Wei, J. Materiom. 5, 597 (2019)

    Article  Google Scholar 

  10. T. Wei, K. Liu, P. Fan, D. Lu, B. Ye, C. Zhou, H. Yang, H. Tan, D. Salamon, B. Nan, H. Zhang, Ceram. Int. 47, 3713 (2021)

    Article  Google Scholar 

  11. A.R. Jayakrishnan, J.P.B. Silva, K. Kamakshi, D. Dastan, V. Annapureddy, M. Pereira, K.C. Sekhar, Prog. Mater’ Sci. 132, 101046 (2023)

    Article  Google Scholar 

  12. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, J. Alloy. Compd. 640, 416 (2015)

    Article  Google Scholar 

  13. M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574 (2015)

    Article  Google Scholar 

  14. Z. Dai, D. Li, Z. Zhou, S. Zhou, W. Liu, J. Liu, X. Wang, X. Ren, Chem. Eng. J. 427, 131959 (2022)

    Article  Google Scholar 

  15. Z. Hanani, S. Merselmiz, M. Amjoud, D. Mezzane, M. Lahcini, J. Ghanbaja, M. Spreitzer, D. Vengust, M. El Marssi, I.A. Luk’yanchuk, Z. Kutnjak, B. Rožič, M. Gouné, J. Materiom. 8, 873 (2022)

    Article  Google Scholar 

  16. Z. Dai, J. Xie, W. Liu, X. Wang, L. Zhang, Z. Zhou, J. Li, X. Ren, A.C.S. Appl, Mater. Interfaces 12, 30289 (2020)

    Article  Google Scholar 

  17. X. Liu, Y. Yuan, L. Cao, E. Li, S. Zhang, Ceram. Int. 48, 19382 (2022)

    Article  Google Scholar 

  18. K. Wang, J.-F. Li, Appl. Phys. Lett. 91, 262902 (2007)

    Article  ADS  Google Scholar 

  19. L. Tan, Q. Sun, Y. Wang, J. Alloy. Compd. 836, 155419 (2020)

    Article  Google Scholar 

  20. Q. Hu, H. Du, W. Feng, C. Chen, Y. Huang, J. Alloy. Compd. 640, 327 (2015)

    Article  Google Scholar 

  21. P. Jia, Z. Zheng, Y. Li, Z. Li, T. Liu, Y. Wang, J. Alloy. Compd. 930, 167416 (2023)

    Article  Google Scholar 

  22. K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064 (2005)

    Article  ADS  Google Scholar 

  23. G.P. Van der Zwet, L.J. Allamandola, F. Baas, J.M. Greenberg, J. Mol. Struct. 195, 213 (1989)

    Article  ADS  Google Scholar 

  24. C.L. Haynes, A.D. McFarland, L. Zhao, R.P. Van Duyne, G.C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, J. Phys. Chem. B 107, 7337 (2003)

    Article  Google Scholar 

  25. Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, J. Alloy. Compd. 775, 116 (2019)

    Article  Google Scholar 

  26. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Nano Energy 58, 768 (2019)

    Article  Google Scholar 

  27. X. Wang, Q. Dong, Y. Pan, H. Chen, J. Wang, X. Dong, L. Deng, X. Chen, H. Zhou, Ceram. Int. 48, 13862 (2022)

    Article  Google Scholar 

  28. Q. Jin, L. Zhao, X. Zhang, R. Zhang, B. Cui, Ceram. Int. 47, 20617 (2021)

    Article  Google Scholar 

  29. F. Si, B. Tang, Z. Fang, H. Li, S. Zhang, Ceram. Int. 45, 17580 (2019)

    Article  Google Scholar 

  30. F. Jensen, Qual. Reliab. Eng. Int. 1, 13 (1985)

    Article  Google Scholar 

  31. L. Tan, X. Wang, W. Zhu, A. Li, Y. Wang, J. Alloy. Compd. 874, 159770 (2021)

    Article  Google Scholar 

  32. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, N. Ahmad, B. Want, W. Khan, Appl. Phys. A 127, 174 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guizhou Provincial Science and Technology Foundation (ZK [2022] General 112), and the National Natural Science Foundation of China (No. 42267009). We also thank Prof. Wu at Sichuan University for the valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JZD, YSL, YY, RLL and PZ. The first draft of the manuscript was written by JZD and YSL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuanyu Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Li, Y., Yang, Y. et al. Enhanced energy storage performance of KNN-BLZS dielectric ceramic. Appl. Phys. A 129, 508 (2023). https://doi.org/10.1007/s00339-023-06795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06795-8

Keywords

Navigation