Skip to main content
Log in

Fabrication of Ni3S2-functionalized V2O3 nanospheres as promising anode materials for rechargeable batteries and supercapacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Supercapacitors (SCs) and lithium-ion batteries (LIBs) are the current representatives for high power applications in the future. In this concern, a simple solvothermal technique was directly implemented to fabricate Ni3S2-decorated V2O3 nanospheres as a potential anode material for LIB and SC applications. X-ray diffraction analysis (XRD) showed the formation of rhombohedral V2O3 structure as major phase, while rhombohedral Ni3S2 and tetragonal VO2 are existed as minor phases. Fourier Transform Infrared Spectrometer (FTIR) inspection revealed the corresponding vibrational modes for V–O–V, V=O, Ni–S and C=S bonds, respectively. Transmission electron microscope (TEM) images of the as-synthesized composite sample exhibited unique strings of nanosized sphere-like morphology. Energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED) techniques confirmed the existence of both oxide and sulphide components. Analysis of XPS V2p spectra demonstrated the presence of V4+ and V3+ species, showing a high agreement with the obtained results from X-ray Rietveld analysis. The prepared Ni3S2@V2O3 composite supercapacitor electrode delivered a high specific capacitance ~ 1535 F g−1 at 5 mV.s−1 and 295 F g−1 at 50 mV s−1. Meanwhile, the fabricated Ni3S2@V2O3 battery anode stored about 550 mAhg−1 at 0.1 A g−1. Electrochemical impedance spectroscopy (EIS) results for the assembled lithium batteries revealed a good polarizability and reversibility upon multiple galvanostatic cycling up to 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data are available and included in the manuscript.

References

  1. M.M.S. Sanad, N.K. Meselhy, H.A. El-Boraey, A. Toghan, Controllable engineering of new ZnAl2O4-decorated LiNi0· 8Mn0· 1Co0· 1O2 cathode materials for high performance lithium-ion batteries. J. Market. Res. 23, 1528–1542 (2023)

    Google Scholar 

  2. M.M.S. Sanad, A. Toghan, Chemical activation of nanocrystalline LiNbO3 anode for improved storage capacity in lithium-ion batteries. Surf. Interfaces 27, 101550 (2021)

    Article  Google Scholar 

  3. V.S. Bhat, A. Toghan, G. Hegde, R.S. Varma, Capacitive dominated charge storage in supermicropores of self-activated carbon electrodes for symmetric supercapacitors. J. Energy Storage 52, 104776 (2022)

    Article  Google Scholar 

  4. A. Toghan, M. Khairy, E.M. Kamar, M.A. Mousa, Effect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor application. J. Mark. Res. 19, 3521–3535 (2022)

    Google Scholar 

  5. J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1(1), 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

    Article  Google Scholar 

  6. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, H.J. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6(10), 5008–5048 (2014). https://doi.org/10.1039/c4nr00024b

    Article  ADS  Google Scholar 

  7. M. Dai, D. Zhao, X. Wu, Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 31(9), 2177–2188 (2020). https://doi.org/10.1016/j.cclet.2020.02.017

    Article  Google Scholar 

  8. A.I. Habeeb, A.S. Al-Asadi, Fabrication of hybrid graphene nanosheets / vanadium(v) oxide nanoparticles composite electrodes for supercapacitor application. Solid State Commun. 360, 115024 (2023). https://doi.org/10.1016/j.ssc.2022.115024

    Article  Google Scholar 

  9. X. Pan, G. Ren, M.N. Hoque, S. Bayne, K. Zhu, Z. Fan, Fast supercapacitors based on graphene-bridged V2O3/voxcore-shell nanostructure electrodes with a power density of 1 MW kg−1. Adv. Mater. Interfaces 1(9), 1400398 (2014). https://doi.org/10.1002/admi.201400398

    Article  Google Scholar 

  10. K. Dahal, Q. Zhang, R. He, I.K. Mishra, Z. Ren, Thermal conductivity of (vo2)1-xcux composites across the phase transition temperature. J. Appl. Phys. 121(15), 155103 (2017). https://doi.org/10.1063/1.4981241

    Article  ADS  Google Scholar 

  11. A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6(5), 1476 (2013). https://doi.org/10.1039/c3ee40260f

    Article  Google Scholar 

  12. Y. Zhang, X. Zhang, Y. Huang, C. Huang, F. Niu, C. Meng, X. Tan, One-step hydrothermal conversion of vo2(b) into W-doped vo2(m) and its phase transition and optical switching properties. Solid State Commun. 180, 24–27 (2014). https://doi.org/10.1016/j.ssc.2013.10.028

    Article  ADS  Google Scholar 

  13. Y. Sun, S. Jiang, W. Bi, C. Wu, Y. Xie, Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. J. Power Sources 196(20), 8644–8650 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.050

    Article  ADS  Google Scholar 

  14. N. Hassan, J. Riaz, M.T. Qureshi, A. Razaq, M. Rahim, A.M. Toufiq, A. Shakoor, Vanadium oxide (V2O3) for energy storage applications through hydrothermal route. J. Mater. Sci.: Mater. Electron. 29(18), 16021–16026 (2018). https://doi.org/10.1007/s10854-018-9689-5

    Article  Google Scholar 

  15. Y. Song, W. Zhao, N. Wei, L. Zhang, F. Ding, Z. Liu, J. Sun, In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy 53, 432–439 (2018). https://doi.org/10.1016/j.nanoen.2018.09.002

    Article  Google Scholar 

  16. Y. Zhang, A. Pan, S. Liang, T. Chen, Y. Tang, X. Tan, Reduced graphene oxide modified V2O3 with enhanced performance for Lithium-Ion Battery. Mater. Lett. 137, 174–177 (2014). https://doi.org/10.1016/j.matlet.2014.09.013

    Article  Google Scholar 

  17. L. Zeng, C. Zheng, J. Xi, H. Fei, M. Wei, Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries. Carbon 62, 382–388 (2013). https://doi.org/10.1016/j.carbon.2013.06.021

    Article  Google Scholar 

  18. J. Zheng, Y. Zhang, C. Meng, X. Wang, C. Liu, M. Bo, X. Pei, Y. Wei, T. Lv, G. Cao, V2O3/C nanocomposites with interface defects for enhanced intercalation pseudocapacitance. Electrochim. Acta 318, 635–643 (2019). https://doi.org/10.1016/j.electacta.2019.06.125

    Article  Google Scholar 

  19. G. Huang, C. Li, X.W. Sun, J. Bai, Fabrication of vanadium oxide, with different valences of vanadium-embedded carbon fibers and their electrochemical performance for Supercapacitor. New J. Chem. 41(17), 8977–8984 (2017). https://doi.org/10.1039/c7nj01482a

    Article  Google Scholar 

  20. Z.Q. Hou, Z.Y. Wang, L.X. Yang, Z.G. Yang, Nitrogen-doped reduced graphene oxide intertwined with V2O3 nanoflakes as self-supported electrodes for flexible all-solid-state supercapacitors. RSC Adv. 7(41), 25732–25739 (2017). https://doi.org/10.1039/c7ra02899g

    Article  ADS  Google Scholar 

  21. X. Zhong, L. Zhang, J. Tang, J. Chai, J. Xu, L. Cao, M. Yang, M. Yang, W. Kong, S. Wang, H. Cheng, Z. Lu, C. Cheng, B. Xu, H. Pan, Efficient coupling of a hierarchical V2O5@Ni3S2hybrid nanoarray for pseudocapacitors and hydrogen production. J. Mater. Chem. A 5(34), 17954–17962 (2017). https://doi.org/10.1039/c7ta04755j

    Article  Google Scholar 

  22. M. Zhu, S. Li, J. Liu, B. Li, Promoting polysulfide conversion by V2O3 hollow sphere for enhanced lithium-sulfur battery. Appl. Surf. Sci. 473, 1002–1008 (2019). https://doi.org/10.1016/j.apsusc.2018.12.189

    Article  ADS  Google Scholar 

  23. R. Kumar, P. Rai, A. Sharma, Free-standing NIV2S4nanosheet arrays on a 3D ni framework via an anion exchange reaction as a novel electrode for asymmetric supercapacitor applications. J. Mater. Chem. A 4(44), 17512–17520 (2016). https://doi.org/10.1039/c6ta07171f

    Article  Google Scholar 

  24. J. Zheng, Y. Zhang, X. Jing, X. Liu, T. Hu, T. Lv, S. Zhang, C. Meng, Synthesis of amorphous carbon coated on V2O3 Core-shell composites for enhancing the electrochemical properties of V2O3 as Supercapacitor Electrode. Colloids Surf., A 518, 188–196 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.035

    Article  Google Scholar 

  25. B. Dhandapani, M. Jagannathan, M.S. AlSalhi, M.J. Aljaafreh, S. Prasad, N-doped carbon embedded NI3S2 electrocatalyst material towards efficient hydrogen evolution reaction in broad ph range. Colloids Surf. A Physicochem. Eng. Aspects 603, 125194 (2020). https://doi.org/10.1016/j.colsurfa.2020.125194

    Article  Google Scholar 

  26. M.M. Farahat, M.A. Abdel Khalek, M.M.S. Sanad, Affordable and reliable cationic-anionic magnetic adsorbent: processing, characterization, and heavy metals removal. J. Clean. Prod. 360, 132178 (2022). https://doi.org/10.1016/j.jclepro.2022.132178

    Article  Google Scholar 

  27. X. Wang, J. Hu, Y. Su, J. Hao, F. Liu, S. Han, J. An, J. Lian, Ni foam-ni3s2@ni(oh)2-graphene sandwich structure electrode materials: Facile synthesis and high supercapacitor performance. Chem. Eur. J. 23(17), 4128–4136 (2017). https://doi.org/10.1002/chem.201605212

    Article  Google Scholar 

  28. X. Xiong, P. Huo, H. Xie, Fabrication of ni3s2@polypyrrole core-shell nanorod arrays on nickel foam as supercapacitor device. J. Polym. Res. (2019). https://doi.org/10.1007/s10965-019-1877-3

    Article  Google Scholar 

  29. M.M. Farahat, M.M.S. Sanad, M.A. Abdel-khalek, Decoration of serpentine with iron ore as an efficient low-cost magnetic adsorbent for Cr (VI) removal from tannery wastewater. Powder Technol. 388, 51–62 (2021). https://doi.org/10.1016/j.powtec.2021.04.061

    Article  Google Scholar 

  30. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  ADS  Google Scholar 

  31. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2P XPS binding energies for different vanadium oxidation states (v5+ to v0+). J. Electron Spectrosc. Relat. Phenom. 135(2–3), 167–175 (2004). https://doi.org/10.1016/j.elspec.2004.03.004

    Article  Google Scholar 

  32. C. Zhang, A. Xie, W. Zhang, J. Chang, C. Liu, L. Gu, X. Duo, F. Pan, S. Luo, CUMN2O4 spinel anchored on graphene nanosheets as a novel electrode material for Supercapacitor. J. Energy Storage 34, 102181 (2021). https://doi.org/10.1016/j.est.2020.102181

    Article  Google Scholar 

  33. D. Wang, Q. Wang, T. Wang, Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous co3O4 nanostructures for application in supercapacitors. Inorg. Chem. 50(14), 6482–6492 (2011). https://doi.org/10.1021/ic200309t

    Article  Google Scholar 

  34. M. De Koninck, S.-C. Poirier, Marsan Benoı̂t., Cu[sub x]co[sub 3–x]o[sub 4] used as bifunctional electrocatalyst. J. Electrochem. Soc. (2006). https://doi.org/10.1149/1.2338631

    Article  Google Scholar 

  35. J. Yang, M. Cho, Y. Lee, Synthesis of hierarchical NICO2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 75, 15–22 (2016). https://doi.org/10.1016/j.bios.2015.08.008

    Article  Google Scholar 

  36. M. Dakshana, S. Meyvel, Optimizing the sulfur precursor for the synthesis of NICO2S4 nanoparticles as high performance supercapacitor electrodes. Vacuum 192, 110499 (2021). https://doi.org/10.1016/j.vacuum.2021.110499

    Article  ADS  Google Scholar 

  37. L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted ni3s2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186

    Article  Google Scholar 

  38. H. Rong, T. Chen, R. Shi, Y. Zhang, Z. Wang. Hierarchical nico2o4@nico2s4 nanocomposite on ni foam as an electrode for hybrid supercapacitors. (n.d.). https://doi.org/10.1021/acsomega.8b00742.s001 (2018)

  39. N. Bchellaoui, Z. Hayat, M. Mami, R. Dorbez-Sridi, A.I. El Abed, Microfluidic-assisted formation of highly monodisperse and mesoporous silica soft microcapsules. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-16554-4

    Article  Google Scholar 

  40. S.W. Arafat, Z.K. Heiba, M.M.S. Sanad, H. Elshimy, H.S. AlSalem, A.M. Alenad, T.A. Taha, Nanofabrication and functional characterization of Co9-xNixS8 nanoparticles for optoelectronic applications. Opt. Mater. 129, 112561 (2022). https://doi.org/10.1016/j.optmat.2022.112561

    Article  Google Scholar 

  41. K. Schneider, Optical properties and electronic structure of V2O5, V2O3 and VO2. J. Mater. Sci. Mater. Electron. 31(13), 10478–10488 (2020). https://doi.org/10.1007/s10854-020-03596-0

    Article  Google Scholar 

  42. H.-Y. Li, K. Jiao, L. Wang, C. Wei, X. Li, B. Xie, Micelle anchored in situ synthesis of V2O3nanoflakes@c composites for supercapacitors. J. Mater. Chem. A 2(44), 18806–18815 (2014). https://doi.org/10.1039/c4ta04062g

    Article  Google Scholar 

  43. Y. Zhang, J. Zheng, T. Hu, F. Tian, C. Meng, Synthesis and supercapacitor electrode of VO2(B)/C core–shell composites with a pseudocapacitance in aqueous solution. Appl. Surf. Sci. 371, 189–195 (2016). https://doi.org/10.1016/j.apsusc.2016.02.199

    Article  ADS  Google Scholar 

  44. C.-S. Dai, P.-Y. Chien, J.-Y. Lin, S.-W. Chou, W.-K. Wu, P.-H. Li, K.-Y. Wu, T.-W. Lin, Hierarchically structured ni3s2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 5(22), 12168–12174 (2013). https://doi.org/10.1021/am404196s

    Article  Google Scholar 

  45. M.M.S. Sanad, S.W. Arafat, Z.K. Heiba, H. Elshimy, Structural characterization and electrochemical performance of ni-doped co9s8 for Li-ion battery and asymmetric supercapacitor dual applications. Phys. B Condens. Matter 630, 413707 (2022). https://doi.org/10.1016/j.physb.2022.413707

    Article  Google Scholar 

  46. P. Liu, Y. Bao, R. Bu, W. Wang, J. Zhang, Z. Xiao, X. Sun, Q. Zhang, S. Li, L. Wang, Rational construction of MOF derived hollow leaf-like ni/CO(VO3)X(OH)2-X for enhanced supercapacitor performance. Appl. Surf. Sci. 533, 147308 (2020). https://doi.org/10.1016/j.apsusc.2020.147308

    Article  Google Scholar 

  47. M.M.S. Sanad, A.K. Yousef, M.M. Rashad, A.H. Naggar, A.Y. El-Sayed, Robust and facile strategy for tailoring COMN2O4 and MNCO2O4 structures as high capacity anodes for Li-ions batteries. Phys. B Condens. Matter 579, 411889 (2020). https://doi.org/10.1016/j.physb.2019.411889

    Article  Google Scholar 

  48. X. Liu, D. Zhang, G. Li, C. Xue, J. Ding, B. Li, D. Chen, L. Li, In situ synthesis of V 2 O 3 Nanorods anchored on reduced graphene oxide as high-performance lithium ion battery anode. ChemistrySelect 3(43), 12108–12112 (2018). https://doi.org/10.1002/slct.201802730

    Article  Google Scholar 

  49. H.-J. Chen, Y. Wang, X.-D. Ma, C. Fan, P.K. Shen, S.-W. Ta, H.-B. Wu, Z.-S. Feng, Cation-adsorption-assisted ni3s2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes. J. Mater. Sci. 55(36), 17081–17093 (2020). https://doi.org/10.1007/s10853-020-05203-3

    Article  ADS  Google Scholar 

  50. X. Wang, B. Shi, X. Wang, J. Gao, C. Zhang, Z. Yang, H. Xie, One-step synthesis of V2O5/Ni3S2 nanoflakes for high electrochemical performance. J. Mater. Chem. A 5(45), 23543–23549 (2017). https://doi.org/10.1039/c7ta07767j

    Article  Google Scholar 

  51. H. Du, F. Ding, J. Zhao, X. Zhang, Y. Li, Y. Zhang, J. Li, X. Yang, K. Li, Y. Yang, Core-shell structured Ni3S2@VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors. Appl. Surf. Sci. 508, 144876 (2020). https://doi.org/10.1016/j.apsusc.2019.144876

    Article  Google Scholar 

  52. Z. Xing, Q. Chu, X. Ren, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ni3S2 coated zno array for high-performance supercapacitors. J. Power Sources 245, 463–467 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.012

    Article  ADS  Google Scholar 

  53. A.Y. Shenouda, M.M. Sanad, Electrochemical performance optimization of LI2NIXFE1−XSIO4 cathode materials for lithium-ion batteries. J. Electrochem. Energy Convers. Storage (2017). https://doi.org/10.1115/1.4036318

    Article  Google Scholar 

  54. M.M.S. Sanad, M.H. El-Sadek, Porous niobium carbide as promising anode for high performance lithium-ions batteries via cost-effective processing. Diam. Relat. Mater. 121, 108722 (2022). https://doi.org/10.1016/j.diamond.2021.108722

    Article  ADS  Google Scholar 

  55. X. Li, J. Fu, Z. Pan, J. Su, J. Xu, B. Gao, X. Peng, L. Wang, X. Zhang, P.K. Chu, Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries. J. Power Sources 331, 58–66 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.031

    Article  ADS  Google Scholar 

  56. C. Huan, X. Zhao, X. Xiao, Y. Lu, S. Qi, Y. Zhan, L. Zhang, G. Xu, One-step solvothermal synthesis of v2o3@c nanoparticles as anode materials for lithium-ion battery. J. Alloy. Compd. 776, 568–574 (2019). https://doi.org/10.1016/j.jallcom.2018.10.323

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-76.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moustafa M. S. Sanad or Arafat Toghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.M.S., Arafat, S.W., Heiba, Z.K. et al. Fabrication of Ni3S2-functionalized V2O3 nanospheres as promising anode materials for rechargeable batteries and supercapacitors. Appl. Phys. A 129, 516 (2023). https://doi.org/10.1007/s00339-023-06794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06794-9

Keywords

Navigation