Skip to main content

Advertisement

Log in

Toxicity and energy storage properties of magnesium oxide doped cobalt ferrite nanocomposites for biomedical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, cobalt ferrite and magnesium oxide nanoparticles were synthesized by co-precipitation and sol–gel methods, respectively. Magnesium oxide doped cobalt ferrite nanocomposites were prepared by mixing powder forms of cobalt ferrite nanoparticles with 10% and 25% in weight MgO powders. The SEM and XRD analyses revealed that pure spinel ferrite structure and single phase magnesium oxide nanoparticles without impurities are obtained. The structural analyses also approved the formation of both phases coexisting in the nanocomposite with homogenous distribution in nanometer particle sizes. In vitro cytotoxic effects of the samples with several concentrations on L929 mouse fibroblast cells were investigated. It is seen that cobalt ferrite nanoparticles increased cell viability in all concentrations and the cell viability of nanocomposites also has been observed as over 95%. Additionally, the energy storage ability of the nanocomposites is performed by frequency-dependent admittance measurements in 5 Hz–13 MHz frequency ranges. It is seen that the addition of magnesium oxide content reduced the complex dielectric constant and dielectric loss of the cobalt ferrite-based nanocomposites effectively. The results showed that magnesium oxide-doped cobalt ferrite nanocomposites sustain nontoxic behavior for biomedical applications in addition to their adjustable dielectric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

References

  1. M. Hasanzadeh, N. Shadjou, M. de la Guardia, Iron, and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal. Chem. (Ref. Ed.) 72, 1–9 (2015). https://doi.org/10.1016/j.trac.2015.03.016

    Article  Google Scholar 

  2. I. Ibrahim, I.O. Ali, T.M. Salama, A.A. Bahgat, M.M. Mohamed, Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: high catalytic performances for nitroarenes reduction. Appl. Catal. B Environ. 181, 389–402 (2016). https://doi.org/10.1016/j.apcatb.2015.08.005

    Article  Google Scholar 

  3. X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chem. Eng. J. 250, 164–174 (2014). https://doi.org/10.1016/j.cej.2014.03.113

    Article  Google Scholar 

  4. K.K. Kefeni, T.A. Msagati, T.T. Nkambule, B.B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314

    Article  Google Scholar 

  5. S.D. Bhame, P.A. Joy, Enhanced strain sensitivity in magnetostrictive spinel ferrite Co1−xZnxFe2O4. J. Magn. Magn. Mater. 447, 150–154 (2018). https://doi.org/10.1016/j.jmmm.2017.09.075

    Article  ADS  Google Scholar 

  6. K.D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots, 1st edn. (CRC Press, Florida; United States, 2010). https://doi.org/10.1201/9781420075519

    Book  Google Scholar 

  7. K. Ali, A. Bahadur, A. Jabbar, S. Iqbal, I. Ahmad, M.I. Bashir, Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites. J. Magn. Magn. Mater. 434, 30–36 (2017). https://doi.org/10.1016/j.jmmm.2016.12.009

    Article  ADS  Google Scholar 

  8. R.K. Panda, R. Muduli, D. Behera, Electric and magnetic properties of Bi substituted cobalt ferrite nanoparticles: evolution of grain effect. J. Alloy. Compd. 634, 239–245 (2015). https://doi.org/10.1016/j.jallcom.2015.02.087

    Article  Google Scholar 

  9. K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterization, and applications in electronic device. Mater. Sci. Eng., B 215, 37–55 (2017). https://doi.org/10.1016/j.mseb.2016.11.002

    Article  Google Scholar 

  10. M. Kamran, M. Anis-ur-Rehman, Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J. Alloys Compd. 822, 153583 (2020). https://doi.org/10.1016/j.jallcom.2019.153583

    Article  Google Scholar 

  11. M. Atif, W. Asghar, M. Nadeem, W. Khalid, Z. Ali, S. Badshah, Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites. J. Phys. Chem. Solids 123, 36–42 (2018). https://doi.org/10.1016/j.jpcs.2018.07.010

    Article  ADS  Google Scholar 

  12. A. Sathiya Priya, D. Geetha, N. Kavitha, Evaluation of structural and dielectric properties of Al, Ce co-doped cobalt ferrites. Mater. Res. Express 5(6), 066109 (2018). https://doi.org/10.1088/2053-1591/aacd1e

    Article  ADS  Google Scholar 

  13. S. Iqbal, M. Fakhar-e-Alam, M. Atif, N. Âmin, K. Alimgeer, A. Ali, A. Ahmad, A. Hanif, A. Farooq, Structural, morphological, antimicrobial, and ın vitro photodynamic therapeutic assessments of novel Zn+2-substituted cobalt ferrite nanoparticles. Results Phys 15, 102529 (2019). https://doi.org/10.1016/j.rinp.2019.102529

    Article  Google Scholar 

  14. V.S. Kirankumar, S. Sumathi, Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 8738–8746 (2018). https://doi.org/10.1007/s10854-018-8890-x

    Article  Google Scholar 

  15. M. Madhukara Naika, H.S. Bhojya Naika, G. Nagarajub, M. Vinuthc, K. Vinud, R. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles Structural, optical, photocatalytic and antibacterial studies. Nano-Struct. Nano-Objects 19, 100322 (2019). https://doi.org/10.1016/j.nanoso.2019.100322

    Article  Google Scholar 

  16. S.M. Peymani-Motlagh, N. Moeinian, M. Rostami, M. Fasihi-Ramandi, S.A. Obhani-Nasab, M. Rahimi-Nasrabadi, N. Ajami, Effect of Gd3+-, Pr3+-or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests. J. Rare Earths 37(12), 1288–1295 (2019). https://doi.org/10.1016/j.jre.2019.04.010

    Article  Google Scholar 

  17. M.A. Almessiere, Y. Slimani, M. Sertkol, F.A. Khan, M. Nawaz, H. Tombuloglu, A. Baykal, Ce–Nd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties. Ceram. Int. 45, 16147–16156 (2019). https://doi.org/10.1016/j.ceramint.2019.05.133

    Article  Google Scholar 

  18. S.J. Mercy, D. Parajuli, N. Murali, A. Ramakrishna, Y. Ramakrishna, V. Veeraiah, K. Samatha, Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted Cobalt ferrite. Appl. Phys. A 126, 873 (2020). https://doi.org/10.1007/s00339-020-04048-6

    Article  ADS  Google Scholar 

  19. V. Vithal, P.K. Pankaj, D.B. Shankar, P.K. Gaikwad, N.D. Shinde, K.M. Jadhav, Low temperature synthesis of magnesium doped cobalt ferrite nanoparticles and their structural properties. Int. Adv. Res. J. Sci. Eng. Technol. (2015). https://doi.org/10.17148/IARJSET.2015.2313

    Article  Google Scholar 

  20. H.S. Mund, B.L. Ahuja, Structural and magnetic properties of Mg doped cobalt ferrite nanoparticles prepared by sol-gel Method. Mater. Res. Bull. 85, 228–233 (2017). https://doi.org/10.1016/j.materresbull.2016.09.027

    Article  Google Scholar 

  21. I.C. Nlebedim, R.L. Hadimani, R. Prozorov, D.C. Jiles, Structural, magnetic, and magnetoelastic properties of magnesium substituted cobalt ferrite. J. Appl. Phys. 113, 17A928 (2013). https://doi.org/10.1063/1.4798822

    Article  Google Scholar 

  22. V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996). https://doi.org/10.1016/S0304-8853(96)00280-6

    Article  ADS  Google Scholar 

  23. K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, Synthesis, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007). https://doi.org/10.1016/j.jmmm.2006.06.003

    Article  ADS  Google Scholar 

  24. R. Wahab, S.G. Ansari, M.A. Dar, Y.S. Kim, H.S. Shin, Synthesis of magnesium oxide nanoparticles by sol-gel process. Mater. Sci. Forum 558, 983–986 (2007). https://doi.org/10.4028/www.scientific.net/MSF.558-559.983

    Article  Google Scholar 

  25. Z. Güven Özdemir, M. Kılıç, Y. Karabul, B. Süngü Mısırlıoğlu, Ö. Çakır, N.D. Kahya, A transition in the electrical conduction mechanism of CuO/CuFe2O4 nanocomposites. J. Electroceram. 44(12), 1–15 (2020). https://doi.org/10.1007/s10832-019-00194-3

    Article  Google Scholar 

  26. O.M. Lemine, A. Alanazi, E.L. Albert et al., γ-Fe2O3/Gd2O3-chitosan magnetic nanocomposite for hyperthermia application: structural, magnetic, heating efficiency and cytotoxicity studies. Appl. Phys. A 126, 471 (2020). https://doi.org/10.1007/s00339-020-03649-5

    Article  ADS  Google Scholar 

  27. E. Yavuz, S. Dinc, M. Kara, Effects of endogenous molasses carbon dots on macrophages and their potential utilization as anti-inflammatory agents. Appl. Phys. A 126, 22 (2020). https://doi.org/10.1007/s00339-019-3189-1

    Article  ADS  Google Scholar 

  28. J. Panda, S. Das, S. Kumar et al., Investigation of antibacterial, antioxidant, and anticancer properties of hydrothermally synthesized cobalt ferrite nanoparticles. Appl. Phys. A 128, 562 (2022). https://doi.org/10.1007/s00339-022-05700-z

    Article  ADS  Google Scholar 

  29. B. Pashaei, A. Aghaei, M. Shaterian, Cobalt ferrite magnetic nanoceramics as an efficient nanocatalyst for the oxidation of olefins in the presence of molecular O2 as an environmentally safe oxidant. Appl. Organomet. Chem. (2023). https://doi.org/10.1002/aoc.7126

    Article  Google Scholar 

  30. L. Ai, J. Jiang, Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr. Appl. Phys. 10(1), 284–288 (2010). https://doi.org/10.1016/j.cap.2009.06.007

    Article  ADS  Google Scholar 

  31. D. Karakaş, F. Ari, E. Ulukaya, The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turk. J. Biol. 41(6), 919–925 (2017). https://doi.org/10.3906/biy-1703-104

    Article  Google Scholar 

  32. M. Abudayyak, T. Altınçekiç Gürkaynak, G. Özhan, In vitro evaluation of the toxicity of cobalt ferrite nanoparticles in kidney cell. Turk. J. Pharm. Sci. 14(2), 169–173 (2017). https://doi.org/10.4274/tjps.99609

    Article  Google Scholar 

  33. M. Lickmichand, C.S. Shaji, N. Valarmathi, A.S. Benjamin, R.K.A. Kumar, S. Nayak, In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications. Mater. Today: Proc. 15, 252–261 (2019). https://doi.org/10.1016/j.matpr.2019.05.002

    Article  Google Scholar 

  34. S.M. Ansari, R.D. Bhor, K.R. Pai, S. Mazumder, D. Sen, Y.D. Kolekar, Size and chemistry controlled cobalt-ferrite nanoparticles and their anti-proliferative effect against the MCF-7 breast cancer cells. ACS Biomater. Sci. Eng. 2(12), 2139–2152 (2016). https://doi.org/10.1021/acsbiomaterials.6b00333

    Article  Google Scholar 

  35. A. Sunny, K.S. Ak, V. Karunakaran, M. Aathira, G.R. Mutta, K.K. Maiti, Magnetic properties of biocompatible CoFe2O4 nanoparticles using a facile synthesis. Nano-Struct. Nano-Objects 16, 69–76 (2018). https://doi.org/10.1016/j.nanoso.2018.04.003

    Article  Google Scholar 

  36. B. Süngü Mısırlıoğlu, Ö. Çakır, H. Çalık, R. Çakır-Koç, Assessment of structural and cytotoxic properties of cobalt ferrite nanoparticles for biomedical applications. Inorg. Nano-Metal Chem. (2020). https://doi.org/10.1080/24701556.2020.1862216

    Article  Google Scholar 

  37. M.K. Patel, M. Zafaryab, M.M.A. Rizvi, V.V. Agrawal, Z.A. Ansari, B.D. Malhotra, Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J. Nanoeng. Nanomanuf. 3(2), 162–166 (2013). https://doi.org/10.1166/jnan.2013.1122

    Article  Google Scholar 

  38. A. Mittag, T. Schneider, M. Westermann, M. Glei, Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch. Toxicol. 93(6), 1491–1500 (2019). https://doi.org/10.1007/s00204-019-02451-4

    Article  Google Scholar 

  39. S. Ge, G. Wang, Y. Shen, Q. Zhang, D. Jia, H. Wang, Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnol. 5(2), 36 (2011). https://doi.org/10.1049/iet-nbt.2010.0022

    Article  Google Scholar 

  40. S.I. Ahmad, A. Rauf, T. Mohammed, A. Bahafi, D.R. Kumar, M.B. Suresh, Dielectric, impedance, AC conductivity and low-temperature magnetic studies of Ce and Sm co-substituted nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 492, 165666 (2019). https://doi.org/10.1016/j.jmmm.2019.165666

    Article  Google Scholar 

  41. M. Kılıç, N.D. Kahya, B. Süngü Mısırlıoğlu, Ö. Çakır, Z. Güven Özdemir, Dielectric and magnetic properties of CuFe2O4/CuO nanocomposites. Ferroelectrics 571(1), 183–199 (2021). https://doi.org/10.1080/00150193.2020.1853752

    Article  ADS  Google Scholar 

  42. R.K. Selvan, C.O. Augustin, V. Šepelák, L.J. Berchmans, C. Sanjeeviraja, A. Gedanken, Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Mater. Chem. Phys. 112(2), 373–380 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.094

    Article  Google Scholar 

  43. A.N. Yusoff, M.H. Abdullah, Microwave electromagnetic and absorption properties of some LiZn ferrites. J. Magn. Magn. Mater. 269(2), 271–280 (2004). https://doi.org/10.1016/S0304-8853(03)00617-6

    Article  ADS  Google Scholar 

  44. A.P. Singh, O.P. Pandey, P. Sharma, Effect of sintering additives on structural, magnetic, and dielectric properties of Ba3Co2Fe24O41 ferrite. J. Supercond. Novel Magn. 33, 519–526 (2020). https://doi.org/10.1007/s10948-019-05202-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK 2209-A National Research Projects Support Programme for Undergraduate Students under Project Number: 1919B011801056 (2018/1). The authors also would like to thank Prof.Dr. Naime Didem Kahya for her support in terms of the synthesis of the particles.

Funding

TUBİTAK 2209-A National Research Projects Support Programme for Undergraduate Students, 1919B011801056 (2018/1), Volkan Kurt.

Author information

Authors and Affiliations

Authors

Contributions

The synthesis stage of the cobalt ferrite and magnesium oxide particles was performed by VK. BSM and VK performed the experimental processes of the preparation of the nanocomposites. The structural measurements were analyzed by BSM, VK, and ÖÇ. The dielectric measurements of the samples were performed and analyzed by BSM and VK. The In Vitro Experiments were performed and analyzed by HC and RC-K. All authors contributed to the writing stages of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Banu Süngü Mısırlıoğlu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mısırlıoğlu, B.S., Kurt, V., Calik, H. et al. Toxicity and energy storage properties of magnesium oxide doped cobalt ferrite nanocomposites for biomedical applications. Appl. Phys. A 129, 506 (2023). https://doi.org/10.1007/s00339-023-06792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06792-x

Keywords

Navigation