Skip to main content
Log in

A 3D numerical study on impact-freezing of Nickel drops in thermal spraying conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Modeling drop impact in 3D in thermal spraying conditions poses a great challenge, since it requires first of all an accurate interface tracking model and an efficient numerical scheme to solve the governing equations. This paper thus put forward an integrated model, in the framework of the conservative level set equation, to simulate drop impact in real thermal spraying conditions. The model couples the conservative level set equation with the Navier–Stokes equation and is discretized using the finite difference method on a half-staggered grid. The model was validated against experimental data, showing reasonable agreement. Then it was applied to real impact in thermal spraying conditions. Nickel drop impact with solidification was simulated first. Subsequently, effects of contact angle, thermal contact resistance, and substrate materials, were examined. It shows that lower contact angle does not lead to larger contact area, since solidification commences faster around the contact line, thereby pinning its movement, and that thermal contact resistance exerts a huge impact on final splat shape. The smaller the contact resistance, the more violent the splash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt, R.S. Kottada, A.S.M. Ang, Thermal spray high-entropy alloy coatings: a review. J. Therm. Spray Technol. 29(5), 857–893 (2020). https://doi.org/10.1007/s11666-020-01047-0

    Article  ADS  Google Scholar 

  2. D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. J. Therm. Spray Technol. 28(4), 598–644 (2019). https://doi.org/10.1007/s11666-019-00857-1

    Article  ADS  Google Scholar 

  3. B. Huang, C. Zhang, G. Zhang, H. Liao, Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: a review. Surf. Coat. Technol. 377, 124896 (2019). https://doi.org/10.1016/j.surfcoat.2019.124896

    Article  Google Scholar 

  4. S. Morelli, V. Testa, G. Bolelli, O. Ligabue, E. Molinari, N. Antolotti, L. Lusvarghi, CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes. J. Eur. Ceram. Soc. 40(12), 4084–4100 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.04.058‌

    Article  Google Scholar 

  5. A. Fardan, R. Ahmed, Modeling the evolution of residual stresses in thermally sprayed YSZ coating on stainless steel substrate. J. Therm. Spray Technol. 28(4), 717–736 (2019). https://doi.org/10.1007/s11666-019-00856-2‌

    Article  ADS  Google Scholar 

  6. V.V. Satyavathi Yedida, H. Vasudev, A review on the development of thermal barrier coatings by using thermal spray techniques. Mater. Today 50, 1458–1464 (2022). https://doi.org/10.1016/j.matpr.2021.09.018‌

    Article  Google Scholar 

  7. A. Silvello, P. Cavaliere, A. Rizzo, D. Valerini, S. Dosta Parras, I. Garcia Cano, Fatigue bending behavior of cold-sprayed Nickel-based superalloy coatings. J. Therm. Spray Technol. 28(5), 930–938 (2019). https://doi.org/10.1007/s11666-019-00865-1‌

    Article  ADS  Google Scholar 

  8. P. Shi, W. Wang, S. Wan, Q. Gao, H. Sun, X. Feng, G. Yi, E. Xie, Q. Wang, Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni- and NiCrAlY-based composite coatings. Surf. Coat. Technol. 405, 126615 (2021). https://doi.org/10.1016/j.surfcoat.2020.126615‌

    Article  Google Scholar 

  9. N.K. Singh, A.S.M. Ang, D.K. Mahajan, H. Singh, Cavitation erosion resistant nickel-based cermet coatings for monel K-500. Tribol. Int. 159, 106954 (2021). https://doi.org/10.1016/j.triboint.2021.106954‌

    Article  Google Scholar 

  10. C.U. Hardwicke, Y.-C. Lau, Advances in thermal spray coatings for gas turbines and energy generation: a review. J. Therm. Spray Technol. 22(5), 564–576 (2013). https://doi.org/10.1007/s11666-013-9904-0‌

    Article  ADS  Google Scholar 

  11. R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31(1), 567–603 (1999). https://doi.org/10.1146/annurev.fluid.31.1.567‌

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Xia, F. Chen, T. Liu, D. Zhang, Y. Tian, D. Zhang, Phase-field simulations of droplet impact on superhydrophobic surfaces. Int. J. Mech. Sci. 240, 107957 (2023). https://doi.org/10.1016/j.ijmecsci.2022.107957‌

    Article  Google Scholar 

  13. A. Hu, D. Liu, 3D simulation of micro droplet impact on the structured superhydrophobic surface. Int. J. Multiph. Flow 147, 103887 (2022). https://doi.org/10.1016/j.ijmultiphaseflow.2021.103887

    Article  MathSciNet  Google Scholar 

  14. D. Hernández-Cid, V.H. Pérez-González, R.C. Gallo-Villanueva, J. González-Valdez, M.A. Mata-Gómez, Modeling droplet formation in microfluidic flow-focusing devices using the two-phases level set method. Mater. Today 48, 30–40 (2022). https://doi.org/10.1016/j.matpr.2020.09.417

    Article  Google Scholar 

  15. S. Osher, R.P. Fedkiw, Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001). https://doi.org/10.1006/jcph.2000.6636

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. E. Olsson, G. Kreiss, A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005). https://doi.org/10.1016/j.jcp.2005.04.007‌

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, A. Dolatabadi, Modeling thermal spray coating processes: a powerful tool in design and optimization. Surf. Coat. Technol. 163–164, 1–11 (2003). https://doi.org/10.1016/s0257-8972(02)00686-2

    Article  Google Scholar 

  18. C.-W. Kang, J.K. Tan, L. Pan, C.Y. Low, A. Jaffar, Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying. Appl. Surf. Sci. 257(24), 10363–10372 (2011). https://doi.org/10.1016/j.apsusc.2011.06.081

    Article  ADS  Google Scholar 

  19. Flow Science Inc., FLOW-3D® Users Manual V9.4, Santa Fe, NM (2010)

  20. C. Le Bot, S. Vincent, E. Meillot, F. Sarret, J.-P. Caltagirone, L. Bianchi, Numerical simulation of several impacting ceramic droplets with liquid/solid phase change. Surf. Coat. Technol. 268, 272–277 (2015). https://doi.org/10.1016/j.surfcoat.2014.10.047

    Article  MATH  Google Scholar 

  21. J. Lee, K.K. Subedi, G.W. Huang, J. Lee, S.-C. Kong, Numerical investigation of YSZ droplet impact on a heated wall for thermal spray application. J. Therm. Spray Technol. 31(7), 2039–2049 (2022). https://doi.org/10.1007/s11666-022-01437-6

    Article  ADS  Google Scholar 

  22. M.J. Nasiri, A. Dolatabadi, C. Moreau, Modeling of liquid detachment and fragmentation during the impact of plasma spray particles on a cold substrate. Int. J. Heat Mass Transf. 189, 122718 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122718

    Article  Google Scholar 

  23. Y. Zhang, S.A. Matthews, A. Tran, M. Hyland, Effects of interfacial heat transfer, surface tension and contact angle on the formation of plasma-sprayed droplets through simulation study. Surf. Coat. Technol. 307, 807–816 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.066

    Article  Google Scholar 

  24. M. Ashour, N. Valizadeh, T. Rabczuk, Phase-field Navier-Stokes model for vesicle doublets hydrodynamics in incompressible fluid flow. Comput. Methods Appl. Mech. Eng. 412, 116063 (2023). https://doi.org/10.1016/j.cma.2023.116063

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. P.-H. Chiu, Y.-T. Lin, A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 230(1), 185–204 (2011). https://doi.org/10.1016/j.jcp.2010.09.021

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. M. Shen, B.Q. Li, Q. Yang, Y. Bai, Y. Wang, S. Zhu, B. Zhao, T. Li, Y. Hu, A modified phase-field three-dimensional model for droplet impact with solidification. Int. J. Multiph. Flow 116, 51–66 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.004

    Article  MathSciNet  Google Scholar 

  27. H.Z. Yuan, Z. Chen, C. Shu, Y. Wang, X.D. Niu, S. Shu, A free energy-based surface tension force model for simulation of multiphase flows by level-set method. J. Comput. Phys. 345, 404–426 (2017). https://doi.org/10.1016/j.jcp.2017.05.020

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. D. Jacqmin, Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000). https://doi.org/10.1017/s0022112099006874

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. H. Ding, P.D.M. Spelt, C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226(2), 2078–2095 (2007). https://doi.org/10.1016/j.jcp.2007.06.028

    Article  MATH  ADS  Google Scholar 

  30. J. Kim, A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204(2), 784–804 (2005). https://doi.org/10.1016/j.jcp.2004.10.032‌

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. M. Shen, B.Q. Li, Bubble rising and interaction in ternary fluid flow: a phase field study. RSC Adv. 13(6), 3561–3574 (2023). https://doi.org/10.1039/d2ra06144a

    Article  ADS  Google Scholar 

  32. Y. Sui, H. Ding, P.D.M. Spelt, Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46(1), 97–119 (2014). https://doi.org/10.1146/annurev-fluid-010313-141338‌

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. S. Mirjalili, C.B. Ivey, A. Mani, A conservative diffuse interface method for two-phase flows with provable boundedness properties. J. Comput. Phys. 401, 109006 (2020). https://doi.org/10.1016/j.jcp.2019.109006

    Article  MathSciNet  MATH  Google Scholar 

  34. C.R. Swaminathan, V.R. Voller, A general enthalpy method for modeling solidification processes. Metall. Trans. B 23(5), 651–664 (1992). https://doi.org/10.1007/bf02649725

    Article  Google Scholar 

  35. Y. Zhang, S. Matthews, M. Hyland, Modelling the spreading behaviour of plasma-sprayed nickel droplets under different impact conditions. J. Phys. D 50(27), 275601 (2017). https://doi.org/10.1088/1361-6463/aa760e

    Article  Google Scholar 

  36. M. Wörner, N. Samkhaniani, X. Cai, Y. Wu, A. Majumdar, H. Marschall, B. Frohnapfel, O. Deutschmann, Spreading and rebound dynamics of sub-millimeter urea-water-solution droplets impinging on substrates of varying wettability. Appl. Math. Model. 95, 53–73 (2021). https://doi.org/10.1016/j.apm.2021.01.038

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Valizadeh, T. Rabczuk, Isogeometric analysis for phase-field models of geometric PDEs and high-order PDEs on stationary and evolving surfaces. Comput. Methods Appl. Mech. Eng. 351, 599–642 (2019). https://doi.org/10.1016/j.cma.2019.03.043

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. J. Qu, Y. Yang, S. Yang, D. Hu, H. Qiu, Droplet impingement on nano-textured superhydrophobic surface: experimental and numerical study. Appl. Surf. Sci. 491, 160–170 (2019). https://doi.org/10.1016/j.apsusc.2019.06.104

    Article  ADS  Google Scholar 

  39. M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi, Splat shapes in a thermal spray coating process: simulations and experiments. J. Therm. Spray Technol. 11(2), 206–217 (2002). https://doi.org/10.1361/105996302770348862

    Article  ADS  Google Scholar 

  40. A.L. Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38(1), 159–192 (2006). https://doi.org/10.1146/annurev.fluid.38.050304.092144

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. C.D. Stow, M.G. Hadfield, An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 373(1755), 419–441 (1981). https://doi.org/10.1098/rspa.1981.0002

    Article  ADS  Google Scholar 

  42. M. Bussmann, S. Chandra, J. Mostaghimi, Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 12(12), 3121–3132 (2000). https://doi.org/10.1063/1.1321258

    Article  MATH  ADS  Google Scholar 

  43. Y. Yonemoto, M. Yamashita, K. Tashiro, T. Kunugi, Estimating the number of fingers and size of ejected droplets in droplet impingement processes on solid substrates. Colloid Interface Sci. Commun. 50, 100651 (2022). https://doi.org/10.1016/j.colcom.2022.100651

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 21KJB460034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Q. Li.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Li, B.Q. A 3D numerical study on impact-freezing of Nickel drops in thermal spraying conditions. Appl. Phys. A 129, 509 (2023). https://doi.org/10.1007/s00339-023-06781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06781-0

Keywords

Navigation