Skip to main content
Log in

Investigation of structural phase transformation of Al metallic glass under uniaxial compression strain by molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the amorphous-crystalline structural phase transformations that occur as a result of uniaxial compression strain applied to the Al amorphous model system obtained by rapid cooling from the liquid phase at 100 K and 300 K temperature values were tried to be investigated by molecular dynamics (MD) simulation method. The forces acting on Al atoms were determined from the gradient of the Embedded Atom Method (EAM) potential function, which includes many-body interactions. The formation of bcc and hcp interphases was observed during the transformation from the amorphous phase to the fcc crystalline phase at a strain rate value of 1 × 109 s−1. The evolution of atomic clusters with short-range order during the amorphous-crystal transformation was determined by radial distribution function (RDF), common neighbor analysis (CNA) and voronoi-polyhedra (VP) analysis, and the development of dislocations formed in the structure during the transformation was determined using DXA analysis. Amorphous-fcc-bcc–fcc and amorphous-bcc–fcc solid–solid phase transformations were determined for the model system at 300 K temperature and amorphous-fcc-bcc–fcc was determined by the applied compression strain. It was determined that the percentage of fcc unit cell structures was higher at 100 K temperature than 300 K temperature value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not available.

References

  1. I.W. Donald, H.A. Davies, J. Non-Cryst, Solids 30, 77–85 (1978)

    Google Scholar 

  2. S. Sachdev, Bond-orientational order in condensed matter systems (Springer, New York, 1992)

    Google Scholar 

  3. A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Nat. Mater. 2(10), 661 (2003)

    ADS  Google Scholar 

  4. M.F. Ashby, A.L. Greer, Scr. Mater. 54(3), 321–326 (2006)

    Google Scholar 

  5. M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, Nat. Mater. 10(2), 123 (2011)

    ADS  Google Scholar 

  6. L. Wondraczek, J.C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, T. Rouxel, Adv. Mater. 23(39), 4578–4586 (2011)

    Google Scholar 

  7. P.F. Yu, S.D. Feng, G.S. Xu, X.L. Guo, Y.Y. Wang, W. Zhao, R.P. Liu, Scr. Mater. 90, 45–48 (2014)

    Google Scholar 

  8. G. Wu, Y. Liu, C. Liu, Q.H. Tang, X.S. Miao, J. Lu, Intermetallics 62, 22–26 (2015)

    Google Scholar 

  9. W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44, 45–89 (2004)

    Google Scholar 

  10. J. Schroers, Adv. Mater. 22(14), 1566–1597 (2010)

    Google Scholar 

  11. M.D. Demetriou et al., Nat. Mater. 10, 123–128 (2011)

    ADS  Google Scholar 

  12. H. Li, C. Fan, K. Tao, H. Choo, P.K. Liaw, Adv. Mater. 18, 752–754 (2006)

    Google Scholar 

  13. J. Liu, V.P.W. Shim, Int. J. Impact Eng. 80, 94–106 (2015)

    Google Scholar 

  14. A. Wang, C. Zhao, A. He, S. Yue, C. Chang, B. Shen, R.W. Li, Intermetallics 71, 1–6 (2016)

    Google Scholar 

  15. K. Wang, T. Fujita, M.W. Chen, T.G. Nieh, H. Okada, K. Koyama, A. Inoue, Appl. Phys. Lett. 91(15), 154101 (2007)

    ADS  Google Scholar 

  16. T. Qi, Y. Li, A. Takeuchi, G. Xie, H. Miao, W. Zhang, Intermetallics 66, 8–12 (2015)

    Google Scholar 

  17. W.T. Chen, S.S. Li, J.P. Chu, K.C. Feng, J.K. Chen, Biosens. Bioelectron. 102, 129–135 (2018)

    Google Scholar 

  18. M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert, Mater. Sci. Eng. C 33, 875–883 (2013)

    Google Scholar 

  19. H.F. Li, Y.F. Zheng, Acta Biomater. 36, 1–20 (2016)

    ADS  Google Scholar 

  20. J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res. 22, 302–313 (2011)

    ADS  Google Scholar 

  21. C.A.C. Souza, D.V. Ribeiro, C.S. Kiminami, J. Non-Cryst, Solids 442, 56–66 (2016)

    Google Scholar 

  22. W. Yang, H. Liu, Y. Zhao, A. Inoue, K. Jiang, J. Huo, H. Ling, Q. Li, B. Shen, Sci. Rep. 4, 6233 (2014)

    ADS  Google Scholar 

  23. A. Inoue, Acta Mater. 48, 279–306 (2000)

    ADS  Google Scholar 

  24. L.A. Greer, Metallic glasses. Science 267, 1947–1953 (1995)

    ADS  Google Scholar 

  25. H.A. Davies, J. Aucote, J.B. Hull, Nature 246, 13–14 (1973)

    ADS  Google Scholar 

  26. C.J. Lin, F. Spaepen, Appl. Phys. Lett. 41, 721–723 (1982)

    ADS  Google Scholar 

  27. G. Xie, W. Zhang, D.V. Louzguine-Luzgin, H. Kimura, A. Inoue, Scripta Mater. 55(8), 687–690 (2006)

    Google Scholar 

  28. Y.X. Wei, X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Mater. Lett. 59, 945–947 (2005)

    Google Scholar 

  29. X.P. Li, M. Yan, G.B. Schaffer, M. Qian, Intermetallics 39, 69–73 (2013)

    Google Scholar 

  30. M.H. Bhat, V. Molinero, E. Soignard, V.C. Solomon, S. Sastry, J.L. Yarger, C.A. Angell, Nature 448, 787–790 (2007)

    ADS  Google Scholar 

  31. S. Trady, M. Mazroui, A. Hasnaoui, K. Saadouni, J. Non-Cryst. Solids 443, 136–142 (2016)

    ADS  Google Scholar 

  32. F. Faupel, W. Frank, M.P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, H. Teichler, Rev. Mod. Phys. 75, 237–280 (2003)

    ADS  Google Scholar 

  33. S. Solhjoo, A. Simchi, H. Aashuri, Molecular dynamics simulation of melting, solidification and remelting processes of aluminum. IJST 36, 13–23 (2012)

    Google Scholar 

  34. L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao, Nature 512, 177–180 (2014)

    ADS  Google Scholar 

  35. D. Jiang, D. Wen, Z. Tian, R. Liu, Phys. A 463, 174–181 (2016)

    Google Scholar 

  36. Y. Gan, Z. Sun, Y. Shen, Appl. Phys. A 123(1), 18 (2017)

    ADS  Google Scholar 

  37. C.C. Koch, I.A. Ovidko, S. Seal, S. Veprek, Structural nanocrystalline materials, fundamentals and applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  38. C. Joseph, P. Bourson, M.D. Fontana, J. Raman Spectrosc. 43(8), 1146–1150 (2012)

    ADS  Google Scholar 

  39. S. Sultana, M. Manjum, M.M. Islam, M.M. Rahman, M.Y.A. Mollah, M.A.B.H. Susan, RSC Adv. 6(106), 104620–104623 (2016)

    ADS  Google Scholar 

  40. R. Svoboda, V. Karabyn, J. Malek, M. Frumar, L. Benes, M. Vlcek, J. Alloy. Comp. 674, 63–72 (2016)

    Google Scholar 

  41. B. Lohwongwatana, J. Schroers, W.L. Johnson, Phys. Rev. Lett. 96(7), 075503 (2006)

    ADS  Google Scholar 

  42. R. Cao, Y. Deng, C. Deng, J. Mater. Res. 30(11), 1820–1826 (2015)

    ADS  Google Scholar 

  43. T. Cagin, G. Dereli, M. Uludogan, M. Tomak, Phys. Rev. B 59(4), 3468–3472 (1999)

    ADS  Google Scholar 

  44. X.J. Zhang, C.L. Chen, J. Low Temp. Phys. 169(2012), 40–50 (2012)

    ADS  Google Scholar 

  45. K.A. Tolpin, V.I. Bachurin, V.E. Yurasova, Nucl. Instrum. Methods Phys. Res. B 273, 76–79 (2012)

    ADS  Google Scholar 

  46. L.A. Marques, L. Pelaz, M. Aboy, P. Lopez, J. Barbolla, Comput. Mat. Sci. 33, 92–105 (2005)

    Google Scholar 

  47. J. Cai, Y.Y. Ye, Phys. Rev. B 54, 8398 (1996)

    ADS  Google Scholar 

  48. A. Malins, S.R. Williams, J. Eggers, C.P. Royall, J. Chem. Phys. 139, 234506 (2013)

    ADS  Google Scholar 

  49. M.S. Daw, R.D. Hatcher, Solid State Comm. 56, 697–699 (1985)

    ADS  Google Scholar 

  50. M.J. Mills, M.S. Daw, G.J. Thomas, F. Cosandey, Ultramicroscopy 40, 247–257 (1992)

    Google Scholar 

  51. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    ADS  Google Scholar 

  52. S.M. Foiles, M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251–310 (1993)

    Google Scholar 

  53. M.S. Daw, S.M. Foiles, Phys. Rev. Lett. 59, 2756 (1987)

    ADS  Google Scholar 

  54. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196–1201 (1980)

    ADS  Google Scholar 

  55. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182–7190 (1981)

    ADS  Google Scholar 

  56. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Phys. Rev. B 69, 144113 (2004)

    ADS  Google Scholar 

  57. M. Rigby, E.B. Smith, W.A. Wakeham, G.C. Maitland, The force between molecules, vol. 144 (Oxford University Press Clarendon Press, New York, 1986)

    Google Scholar 

  58. G. Bonny, N. Castin, D. Terentyev, Model. Simul. Mater. Sci. Eng. 21, 085004 (2013)

    ADS  Google Scholar 

  59. Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, J. Kress, Phys. Rev. B 63, 224106 (2001)

    ADS  Google Scholar 

  60. E.U. Bañuelos, C.C. Aburto, A.M. Arce, J. Chem. Phys. 144, 094504 (2016)

    ADS  Google Scholar 

  61. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012)

    ADS  Google Scholar 

  62. W.Z. Polak, Comput. Mater. Sci. 201, 110882 (2022)

    Google Scholar 

  63. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    ADS  Google Scholar 

  64. Y.Q. Cheng, J. Ding, E. Ma, Mater. Res. Lett. 1, 3–12 (2013)

    Google Scholar 

  65. J. Hwang, Nanometer Scale Atomic Structure of Zirconium Based Bulk (Ph.D. diss.), Te University of Wisconsin-Madiscon, (2011)

  66. http://lammps.sandia.gov/. LAMMPS Molecular Dynamics Simulator (online date: 02 Apr 2021

  67. M. Kbirou, S. Trady, A. Hasnaoui, M. Mazroui, Philos. Mag. 97, 2753–2771 (2017)

    ADS  Google Scholar 

  68. L. Qi, L.F. Dong, S.L. Zhang, X.B. Chen, R.P. Liu, P.K. Liaw, Phys. Lett. Sect A Gen. At. Solid State Phys. 372, 708–711 (2008)

    Google Scholar 

  69. S. Sachdev, D.R. Nelson, Phys. Rev. B 32, 4592 (1985)

    ADS  Google Scholar 

  70. L. Qi, H.F. Zhang, Z.Q. Hu, Intermetallics 12, 1191–1195 (2004)

    Google Scholar 

  71. K.V. Reddy, M. Meraj, S. Pal, Mater. Chem. Phys. 237, 121831 (2019)

    Google Scholar 

  72. B. Fultz, J. Chem. Phys. 87(3), 1604–1609 (1987)

    ADS  Google Scholar 

  73. K.P. Staudhammer, L.E. Murr, S.S. Hecker, Acta Metall. 31(2), 267–274 (1983)

    Google Scholar 

  74. G.B. Olson, M. Cohen, Metall. Trans. A 6(4), 791–795 (1975)

    Google Scholar 

  75. A. Hirata, L.J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, M.W. Chen, Sci 341(6144), 376–379 (2013)

    ADS  Google Scholar 

  76. S.Q. Jiang, Z.W. Wu, M.Z. Li, J. Chem. Phys. 144(15), 154502 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Aksu Canbay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazanc, S., Aksu Canbay, C. Investigation of structural phase transformation of Al metallic glass under uniaxial compression strain by molecular dynamics simulation. Appl. Phys. A 129, 495 (2023). https://doi.org/10.1007/s00339-023-06780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06780-1

Keywords

Navigation