Skip to main content
Log in

p-T-dependent structural transformations of Zn-monochalcogenides to switch their semiconductor–metal transition: a DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Motivated by the wide-band-gap semiconductor properties of Zn-monochalcogenides (Zn-X; X:S, Se and Te), especially for their crucial industrial applications, we use a first-principles approach to investigate the B3 (zinc blende type) to B1 (rock salt type) structural transitions in this series of compounds as a function of pressure and temperature. Under static conditions (i.e., T = 0 K), the transition pressure is found to steadily drop from ZnS to ZnTe via intermediate ZnSe. Our calculations within quasi-harmonic approximation yield negative Clapeyron slopes of the B3–B1 phase boundaries for all the three compounds, where ZnTe has the highest negative slopes. We also present a completely new set of calculations for the thermoelasticity of Zn-X phases in the temperature range 0–1100 K. This article then addresses how the B3–B1 phase transitions can influence the mechanical as well as electronic properties of Zn-X. This phase transition always results in a softening of their elastic constant C12; however, C11 and C44 get stiffened. The same structural transition switches a semiconductor to conductor-type electronically favorable transition, as inferred from their high-pressure electronic structure. Among the three Zn-X compounds, ZnTe becomes the most metallic phase following the B3–B1 transition. Our findings offer a novel explanation for the complete loss of semiconductor property of these monochalcogenides at elevated pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Suresh, Nanosci. Nanotechnol. 3, 62 (2013)

    Google Scholar 

  2. F. Göde, C. Gümüş, M. Zor, J. Cryst. Growth 299, 136 (2007)

    ADS  Google Scholar 

  3. Y.P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, L. Zhang, Sci. Rep. 5, 2 (2015)

    Google Scholar 

  4. N. Tessler, V. Medvedev, M. Kazes, S.H. Kan, U. Banin, Science (80-) 295, 1506 (2002)

    ADS  Google Scholar 

  5. D. Gal, G. Hodes, D. Hariskos, D. Braunger, H.W. Schock, Appl. Phys. Lett. 73, 3135 (1998)

    ADS  Google Scholar 

  6. M. Dimitrievska, H. Xie, A.J. Jackson, X. Fontané, M. Espíndola-Rodríguez, E. Saucedo, A. Pérez-Rodríguez, A. Walsh, V. Izquierdo-Roca, Phys. Chem. Chem. Phys. 18, 7632 (2016)

    Google Scholar 

  7. A.L. Edwards, H.G. Drickamer, Phys. Rev. 122, 1149 (1961)

    ADS  Google Scholar 

  8. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  9. P.K. Das, N. Mandal, A. Arya, J. Appl. Phys. 121, 085101 (2017)

    ADS  Google Scholar 

  10. J.E. Jaffe, R. Pandey, M.J. Seel, Phys. Rev. B 47, 6299 (1993)

    ADS  Google Scholar 

  11. M. Bilge, S.Ö. Kart, H.H. Kart, T. Çağın, Mater. Chem. Phys. 111, 559 (2008)

    Google Scholar 

  12. V.I. Smelyansky, J.S. Tse, Phys. Rev. B 52, 4658 (1995)

    ADS  Google Scholar 

  13. T. Yang, X. Zhu, J. Ji, J. Wang, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  14. H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. Kalvius, D. Mitchell, T. Das, Phys. Rev. B Condens. Matter Mater. Phys. 53, 11425 (1996)

    ADS  Google Scholar 

  15. R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, B. Palanivel, J. Alloys Compd. 359, 22 (2003)

    Google Scholar 

  16. C. Soykan, S.Ö. Kart, J. Alloys Compd. 529, 148 (2012)

    Google Scholar 

  17. S.V. Ovsyannikov, V.V. Shchennikov, Solid State Commun. 132, 333 (2004)

    ADS  Google Scholar 

  18. S.K. Gupta, S. Kumar, S. Auluck, Phys. B Condens. Matter 404, 3789 (2009)

    ADS  Google Scholar 

  19. D.S. Patil, D.K. Gautam, Phys. B Condens. Matter 344, 140 (2004)

    ADS  Google Scholar 

  20. S. Ves, U. Schwarz, N.E. Christensen, K. Syassen, M. Cardona, Phys. Rev. B 42, 9113 (1990)

    ADS  Google Scholar 

  21. G.A. Samara, H.G. Drickamer, J. Phys. Chem. Solids 23, 457 (1962)

    ADS  Google Scholar 

  22. X.R. Chen, X.F. Li, L.C. Cai, J. Zhu, Solid State Commun. 139, 246 (2006)

    ADS  Google Scholar 

  23. M.S. Miao, W.R.L. Lambrecht, Phys. Rev. Lett. 94, 1 (2005)

    Google Scholar 

  24. F.A. La Porta, L. Gracia, J. Andrés, J.R. Sambrano, J.A. Varela, E. Longo, J. Am. Ceram. Soc. 97, 4011 (2014)

    Google Scholar 

  25. H. Qi, X. Zhang, M. Jiang, C. Liu, Q. Wang, D. Li, Optik (Stuttg). 127, 5576 (2016)

    ADS  Google Scholar 

  26. A. Pattnaik, M. Tomar, P.K. Jha, A.K. Bhoi, V. Gupta, B. Prasad, Lect. Notes Electr. Eng. 442, 9 (2018)

    Google Scholar 

  27. M. Bilge, S.Ö. Kart, H.H. Kart, T. Cagin, J. Achiev. Mater. Manuf. Eng. 31, 29 (2008)

    Google Scholar 

  28. M. Cardona, R.K. Kremer, R. Lauck, G. Siegle, A. Muñoz, A.H. Romero, A. Schindler, Phys. Rev. B Condens. Matter Mater. Phys. 81, 1 (2010)

    Google Scholar 

  29. T. Soma, Solid State Commun. 34, 927 (1980)

    ADS  Google Scholar 

  30. H. Cui-E, Z. Zhao-Yi, C. Yan, C. Xiang-Rong, C. Ling-Cang, Chin. Phys. B 17, 3867 (2008)

    ADS  Google Scholar 

  31. R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, M. Rabah, Comput. Mater. Sci. 38, 29 (2006)

    Google Scholar 

  32. S. Ono, T. Kikegawa, Phase Transit. 91, 9 (2018)

    Google Scholar 

  33. S. Ono, J. Phys. Chem. Solids 141, 109409 (2020)

    Google Scholar 

  34. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  35. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  36. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    ADS  Google Scholar 

  37. G.D. Barrera, D. Colognesi, P.C.H. Mitchell, A.J. Ramirez-Cuesta, Chem. Phys. 317, 119 (2005)

    Google Scholar 

  38. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    ADS  Google Scholar 

  39. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  40. J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)

    ADS  Google Scholar 

  41. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    ADS  Google Scholar 

  42. A.G. Kvashnin, H.A. Zakaryan, C. Zhao, Y. Duan, Y.A. Kvashnina, C. Xie, H. Dong, A.R. Oganov, J. Phys. Chem. Lett. 9, 3470 (2018)

    Google Scholar 

  43. G.F. Davies, J. Phys. Chem. Solids 35, 1513 (1974)

    ADS  Google Scholar 

  44. D. Orlikowski, P. Söderlind, J.A. Moriarty, Phys. Rev. B Condens. Matter Mater. Phys. 74, 1 (2006)

    Google Scholar 

  45. B.H. Lee, J. Appl. Phys. 41, 2984 (1970)

    ADS  Google Scholar 

  46. A. Nazzal, A. Qteish, Phys. Rev. B 53, 8262 (1996)

    ADS  Google Scholar 

  47. K. Kusaba, T. Kikegawa, J. Phys. Chem. Solids 63, 651 (2002)

    ADS  Google Scholar 

  48. B.K. Sarkar, A.S. Verma, S. Sharma, S.K. Kundu, Phys. Scr. 89, 075704 (2014)

    ADS  Google Scholar 

  49. R.A. Casali, N.E. Christensen, Solid State Commun. 108, 793 (1998)

    ADS  Google Scholar 

  50. D. Berlincourt, H. Jaffe, L.R. Shiozawa, Phys. Rev. 129, 1009 (1963)

    ADS  Google Scholar 

  51. B.K. Agrawal, P.S. Yadav, S. Agrawal, Phys. Rev. B 50, 14881 (1994)

    ADS  Google Scholar 

  52. R.A. Casali, J. Lasave, M.A. Caravaca, S. Koval, C.A. Ponce, R.L. Migoni, J. Phys. Condens. Matter 25, 135404 (2013)

    ADS  Google Scholar 

  53. T.V. Anil, C.S. Menon, K.S.K. Kumar, K.P. Jayachandran, J. Phys. Chem. Solids 65, 1053 (2004)

    ADS  Google Scholar 

  54. S. Bendaif, A. Boumaza, O. Nemiri, K. Boubendira, H. Meradji, S. Ghemid, F.E.L.H. Hassan, Bull. Mater. Sci. 38, 365 (2015)

    Google Scholar 

  55. K. Hacini, S. Ghemid, H. Meradji, F. El Haj Hassan, Comput. Mater. Sci. 50, 3080 (2011)

    Google Scholar 

  56. J.C. Jamieson, H.H. Demarest, J. Phys. Chem. Solids 41, 963 (1980)

    ADS  Google Scholar 

  57. P. K. Das, N. Mandal, A. Arya, J. Appl. Phys. (2017)

  58. M.I. McMahon, R.J. Nelmes, D.R. Allan, S.A. Belmonte, T. Bovornratanaraks, Phys. Rev. Lett. 80, 5564 (1998)

    ADS  Google Scholar 

  59. L. Ley, R.A. Pollak, F.R. McFeely, S.P. Kowalczyk, D.A. Shirley, Phys. Rev. B 9, 600 (1974)

    ADS  Google Scholar 

  60. N.E. Christensen, O.B. Christensen, Phys. Rev. B 33, 4739 (1986)

    ADS  Google Scholar 

  61. Y. Zhou, A.J. Campbell, D.L. Heinz, J. Phys. Chem. Solids 52, 821 (1991)

    ADS  Google Scholar 

  62. A. Qteish, A. Muñoz, J. Phys. Condens. Matter 12, 1705 (2000)

    ADS  Google Scholar 

  63. R. Franco, P. Mori-Sánchez, M. Recio, R. Pandey, Phys. Rev. B Condens. Matter Mater. Phys. 68, 1 (2003)

    Google Scholar 

  64. F. Janetzko, K. Jug, J. Phys. Chem. A 108, 5449 (2004)

    Google Scholar 

Download references

Acknowledgements

PKD thanks DST, Govt of India for providing him INSPIRE Faculty Fellowship (DST/INSPIRE/04/2020/001930). This study was also supported by BRNS with a research project (Sanction No. 36(2)/14/25/2016-BRNS). SKM and NM are grateful to DST, India, for providing them with the INSPIRE fellowship and the J. C. BOSE National Fellowship, respectively. AA gratefully acknowledges BARC, Mumbai, for giving financial support in this collaborative work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Kr. Das.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 814 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.K., Mondal, S.K., Mandal, N. et al. p-T-dependent structural transformations of Zn-monochalcogenides to switch their semiconductor–metal transition: a DFT study. Appl. Phys. A 129, 497 (2023). https://doi.org/10.1007/s00339-023-06777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06777-w

Keywords

Navigation