Skip to main content
Log in

The angle-dependent in-plane magnetostriction of polycrystalline CoFe2O4 film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical cantilever beam magnetometer (CBM) setup was used to investigate the angle-dependent in-plane magnetostriction of a polycrystalline CoFe2O4 (CFO) film at room temperature (300 K). We observed compressive and tensile magnetostriction switching in rotation (θ) of magnetic field in the plane of the polycrystalline CFO film. At lower angles, the film exhibits the compressive nature of magnetostriction. However, as the angle of rotation increases, the compressive behavior decays continuously and switches to tensile nature at θ = 35°, and the tensile nature continues to grow up to the angle, θ = 45°. Further rotation of the magnetic field causes the tensile nature of magnetostriction to decline and, at θ = 60°, it switches back to the compressive nature of magnetostriction. The coexistence of compressive and tensile magnetostriction in the polycrystalline CFO film makes it a potentially suitable candidate for designing both sensors and actuators, and thus the film finds a way in developing novel smart materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All the data related to this study are available from the corresponding author upon reasonable request.

References

  1. X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2(9), 1–13 (2017)

    Article  Google Scholar 

  2. R. Bogue, Smart materials: a review of recent developments. Assembly Automation (2012)

  3. K.B. Hathaway, A.E. Clark, Magnetostrictive materials. MRS Bull. 18(4), 34–41 (1993)

    Article  Google Scholar 

  4. İN. Qader, K.Ö.K. Mediha, F. Dagdelen, Y. Aydoğdu, A review of smart materials: researches and applications. El-Cezeri 6(3), 755–788 (2019)

    Google Scholar 

  5. W.G. Drossel, H. Kunze, A. Bucht, L. Weisheit, K. Pagel, Smart3–smart materials for smart applications. Proc. CIRP 36, 211–216 (2015)

    Article  Google Scholar 

  6. D. Fritsch, C. Ederer, First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys. Rev. B 86(1), 014406 (2012)

    Article  ADS  Google Scholar 

  7. C. Kittel, Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21(4), 541 (1949)

    Article  ADS  Google Scholar 

  8. A. Pateras, R. Harder, S. Manna, B. Kiefer, R.L. Sandberg, S. Trugman, E. Fohtung et al., Room temperature giant magnetostriction in single-crystal nickel nanowires. NPG Asia Mater. 11(1), 1–7 (2019)

    Article  Google Scholar 

  9. G. Akhras, Smart materials and smart systems for the future. Can. Mil. J. 1(3), 25–31 (2000)

    Google Scholar 

  10. R. Adhikari, A. Sarkar, M.V. Limaye, S.K. Kulkarni, A.K. Das, Variation and sign change of magnetostrictive strain as a function of Ni concentration in Ni-substituted ZnFe2O4 sintered nanoparticles. J. Appl. Phys. 111(7), 073903 (2012)

    Article  ADS  Google Scholar 

  11. A.A.G.O. Grunwald, A.G. Olabi, Design of a magnetostrictive (MS) actuator. Sens. Actuators A 144(1), 161–175 (2008)

    Article  Google Scholar 

  12. E. Hristoforou, Magnetostrictive delay lines: engineering theory and sensing applications. Meas. Sci. Technol. 14(2), R15 (2003)

    Article  ADS  Google Scholar 

  13. K. Zhang, L. Zhang, L. Fu, S. Li, H. Chen, Z.Y. Cheng, Magnetostrictive resonators as sensors and actuators. Sens. Actuators A 200, 2–10 (2013)

    Article  Google Scholar 

  14. D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, I. Takeuchi et al., Giant magnetostriction in annealed Co1−xFex thin-films. Nat. Commun. 2(1), 1–7 (2011)

    Article  Google Scholar 

  15. E. Quandt, A. Ludwig, J. Betz, K. Mackay, D. Givord, Giant magnetostrictive spring magnet type multilayers. J. Appl. Phys. 81(8), 5420–5422 (1997)

    Article  ADS  Google Scholar 

  16. A. Ludwig, E. Quandt, Giant magnetostrictive thin films for applications in microelectromechanical systems. J. Appl. Phys. 87(9), 4691–4695 (2000)

    Article  ADS  Google Scholar 

  17. S.M. Na, S.J. Suh, S.H. Lim, Fabrication condition effects on the magnetic and magnetostrictive properties of sputtered Tb-Fe thin films. J. Appl. Phys. 93(10), 8507–8509 (2003)

    Article  ADS  Google Scholar 

  18. P. Westwood, J.S. Abell, I.H. Clarke, K.C. Pitman, Microstructure and magnetostriction in rare-earth-iron alloys. J. Appl. Phys. 64(10), 5414–5416 (1988)

    Article  ADS  Google Scholar 

  19. H. Wang, Y.N. Zhang, R.Q. Wu, L.Z. Sun, D.S. Xu, Z.D. Zhang, Understanding strong magnetostriction in Fe100−xGax alloys. Sci. Rep. 3(1), 1–5 (2013)

    Article  Google Scholar 

  20. P.N. Anantharamaiah, Studies on the magnetostrictive properties of metal substituted sintered cobalt ferrite Co(Fe,M)2O4 (M = Al, Ga, In, Mg, Mn, Zn) Ph.D., CSIR-National Chemical Laboratory (2017)

  21. M.V. Reddy, A. Lisfi, S. Pokharel, D. Das, Colossal piezomagnetic response in magnetically pressed Zr+ 4 substituted cobalt ferrites. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  22. P.N. Anantharamaiah, P.A. Joy, Enhancing the strain sensitivity of CoFe2O4 at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe. Phys. Chem. Chem. Phys. 18(15), 10516–10527 (2016)

    Article  Google Scholar 

  23. R.M. Bozorth, J.G. Walker, Magnetostriction of single crystals of cobalt and nickel ferrites. Phys. Rev. 88(5), 1209 (1952)

    Article  ADS  Google Scholar 

  24. K. Prabahar, R. Ranjith, P. Saravanan, A. Srinivas, Effect of magnetic field annealing on the magnetostriction and deflection properties of CoFe2O4 thin films grown by PLD. J. Magn. Magn. Mater. 475, 276–281 (2019)

    Article  ADS  Google Scholar 

  25. J. Wang, X. Gao, C. Yuan, J. Li, X. Bao, Magnetostriction properties of oriented polycrystalline CoFe2O4. J. Magn. Magn. Mater. 401, 662–666 (2016)

    Article  ADS  Google Scholar 

  26. S. Guchhait, H. Aireddy, A.K. Das, The emergence of high room temperature in-plane and out-of-plane magnetostriction in polycrystalline CoFe2O4 film. Sci. Rep. 11(1), 1–8 (2021)

    Article  Google Scholar 

  27. H. Aireddy, A.K. Das, The cantilever beam magnetometer for the measurement of electric field controlled magnetic property of ferromagnet/ferroelectrics heterostructures. Rev. Sci. Instrum. 90(10), 103905 (2019)

    Article  ADS  Google Scholar 

  28. S. Guchhait, H. Aireddy, Keerthana, N.S. Kander, S. Biswas, A.K. Das, Giant magnetostriction and strain sensitivity of ZnFe2O4 film in out-of-plane configuration. J. Appl. Phys. 131(15), 153903 (2022)

    Article  ADS  Google Scholar 

  29. F. Eskandari, S.B. Porter, M. Venkatesan, P. Kameli, K. Rode, J.M.D. Coey, Magnetization and anisotropy of cobalt ferrite thin films. Phys. Rev. Mater. 1(7), 074413 (2017)

    Article  Google Scholar 

  30. T. Dhakal, D. Mukherjee, R. Hyde, P. Mukherjee, M.H. Phan, H. Srikanth, S. Witanachchi, Magnetic anisotropy and field switching in cobalt ferrite thin films deposited by pulsed laser ablation. J. Appl. Phys. 107(5), 053914 (2010)

    Article  ADS  Google Scholar 

  31. J.C. Slonczewski, Anisotropy and magnetostriction in magnetic oxides. J. Appl. Phys. 32(3), S253–S263 (1961)

    Article  ADS  Google Scholar 

  32. G. Bulai, O.F. Caltun, Magnetostriction effects in ferrites, in Ferrite Nanostructured Magnetic Materials (Woodhead Publishing, 2023), pp. 651–667

  33. A. Muhammad, R. Sato-Turtelli, M. Kriegisch, R. Grössinger, F. Kubel, T. Konegger, Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4. J. Appl. Phys. 111(1), 013918 (2012)

    Article  ADS  Google Scholar 

  34. G. Xue, P. Zhang, Z. He, D. Li, Y. Huang, W. Xie, Design and experimental study of a novel giant magnetostrictive actuator. J. Magn. Magn. Mater. 420, 185–191 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.G. acknowledges the FIST Lab, Cryogenic Engineering Center, IIT Kharagpur for the usage of the PLD system. Moreover, the author acknowledges the Department of Science and Technology (DST), India for providing the INSPIRE Fellowship (Grant No. DST/ INSPIRE Fellowship/ 2016/ IF160507) during this work.

Author information

Authors and Affiliations

Authors

Contributions

SG contributed to conceptualization (lead), data curation (lead), formal analysis (lead), investigation (lead), and writing—original draft (lead). HA contributed to formal analysis (supporting), and writing—original draft (supporting). NSK contributed to writing—original draft (supporting). AKD contributed to conceptualization (lead), formal analysis (lead), and supervision (lead).

Corresponding author

Correspondence to Amal Kumar Das.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval

The manuscript does not include any individual person’s data in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guchhait, S., Aireddy, H., Kander, N.S. et al. The angle-dependent in-plane magnetostriction of polycrystalline CoFe2O4 film. Appl. Phys. A 129, 485 (2023). https://doi.org/10.1007/s00339-023-06761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06761-4

Keywords

Navigation