Skip to main content
Log in

Insights into the performance of InAs-based devices in extreme environments from multiscale simulations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Developing electronic devices for space exploration requires understanding the response of the individual components to harsh environments including extreme temperatures and ionizing radiation. In this work, InAs-based devices were studied using multiscale computations. It was found that arsenide vacancies and arsenide anti-sites were the most energetically favorable point defects to form under indium-rich and indium-poor conditions, respectively, with the arsenide anti-site reducing the electron mobility by a factor of 10 at 300 K. Both defect types were found to introduce relatively deep charge transition levels in the band gap and mediate n-type conduction with ionization energies of 0.26 eV and 0.31 eV, respectively. Under indium-rich conditions, indium substitutional defects had comparable stability to the arsenide vacancies and introduced a shallow donor level with ionization energy of 0.03 eV and may play a role in n-type behavior in response to radiation damage. Indium vacancies were significantly less stable than other defects under all conditions and were the only defects to mediate p-type conduction by introducing shallow levels in the band gap. The Seebeck coefficient was found to increase monotonically from -5 × 10–4 V/K toward zero as the concentration of n-type dopants increased from 1015 to 1021 cm−3. The electrical conductivity was shown to increase dramatically by several orders of magnitude around doping concentration of 1020 cm−3 for both donors and acceptors. Finally, IV characteristic curves showed dramatic increase of current in response to increase in temperature and radiation dose consistent with the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data required to reproduce these finding can be made available upon reasonable request.

References

  1. N.J. Quartemont, G. Peterson, C. Moran, A. Samin, B. Wang, C. Yeamans, B. Woodworth, D. Holland, J.C. Petrosky, J.E. Bevins, ATHENA: a unique radiation environment platform at the national ignition facility. Nucl. Instrum. Methods Phys. Res. A 1016, 165777 (2021). https://doi.org/10.1016/J.NIMA.2021.165777

    Article  Google Scholar 

  2. A.J. Samin, J.C. Petrosky, An analysis of point defects in ZnTe using density functional theory calculations. J. Alloys Compd. 921, 166017 (2022). https://doi.org/10.1016/J.JALLCOM.2022.166017

    Article  Google Scholar 

  3. A.J. Samin, D.A. Andersson, E.F. Holby, B.P. Uberuaga, On the role of electro-migration in the evolution of radiation damage in nanostructured ionic materials. Electrochem. Commun. 96, 47–52 (2018). https://doi.org/10.1016/j.elecom.2018.09.010

    Article  Google Scholar 

  4. D.M. Fleetwood, E.X. Zhang, R.D. Schrimpf, S.T. Pantelides, Radiation effects in AlGaN/GaN HEMTs. IEEE Trans. Nucl. Sci. 69, 1105–1119 (2022). https://doi.org/10.1109/TNS.2022.3147143

    Article  ADS  Google Scholar 

  5. A. Samin, M. Kurth, L. Cao, Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries. AIP Adv. 5, 47110 (2015). https://doi.org/10.1063/1.4917308

    Article  Google Scholar 

  6. J.H. Yang, L. Shi, L.W. Wang, S.H. Wei, Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 26, 1–10 (2016). https://doi.org/10.1038/srep21712

    Article  Google Scholar 

  7. A.M. Stoneham, Non-radiative transitions in semiconductors. Rep. Prog. Phys. 44, 1251 (1981). https://doi.org/10.1088/0034-4885/44/12/001

    Article  ADS  Google Scholar 

  8. J.H. Song, H. Choi, H.T. Pham, S. Jeong, Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics. Nat. Commun. 9, 1–9 (2018). https://doi.org/10.1038/s41467-018-06399-4

    Article  Google Scholar 

  9. Y. Park, S.Y. Bae, T. Kim, S. Park, J.T. Oh, D. Shin, M. Choi, H. Kim, B. Kim, D.C. Lee, J.H. Song, H. Choi, S. Jeong, Y. Kim, Charge-selective, narrow-gap indium arsenide quantum dot layer for highly stable and efficient organic photovoltaics. Adv. Energy Mater. 12, 2104018 (2022). https://doi.org/10.1002/AENM.202104018

    Article  Google Scholar 

  10. D. Franke, D.K. Harris, O. Chen, O.T. Bruns, J.A. Carr, M.W.B. Wilson, M.G. Bawendi, Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 7, 1–9 (2016). https://doi.org/10.1038/ncomms12749

    Article  Google Scholar 

  11. M.S. Ram, K.M. Persson, A. Irish, A. Jönsson, R. Timm, L.E. Wernersson, High-density logic-in-memory devices using vertical indium arsenide nanowires on silicon. Nat. Electron. 4, 914–920 (2021). https://doi.org/10.1038/s41928-021-00688-5

    Article  Google Scholar 

  12. P. Espinet-Gonzalez, E. Barrigón, G. Otnes, G. Vescovi, C. Mann, R.M. France, A.J. Welch, M.S. Hunt, D. Walker, M.D. Kelzenberg, I. Åberg, M.T. Borgström, L. Samuelson, H.A. Atwater, Radiation tolerant nanowire array solar cells. ACS Nano 13, 12860–12869 (2019). https://doi.org/10.1021/ACSNANO.9B05213/SUPPL_FILE/NN9B05213_SI_001.PDF

    Article  Google Scholar 

  13. J.L. Autran, D. Munteanu, Atmospheric neutron radiation response of III–V binary compound semiconductors. IEEE Trans. Nucl. Sci. 67, 1428–1435 (2020). https://doi.org/10.1109/TNS.2020.2971611

    Article  ADS  Google Scholar 

  14. J. Li, A. Aierken, Y. Liu, Y. Zhuang, X. Yang, J.H. Mo, R.K. Fan, Q.Y. Chen, S.Y. Zhang, Y.M. Huang, Q. Zhang, A brief review of high efficiency III–V solar cells for space application. Front. Phys. 8, 657 (2021). https://doi.org/10.3389/FPHY.2020.631925/BIBTEX

    Article  Google Scholar 

  15. M. Imaizumi, Y. Okuno, T. Takamoto, S.I. Sato, T. Ohshima, T. Okamoto, Displacement damage dose analysis of alpha-ray degradation on output of an InGaP solar cell. Conf. Rec. IEEE Photovolta. Spec. Conf. (2020). https://doi.org/10.1109/PVSC45281.2020.9300777

    Article  Google Scholar 

  16. G. Vizkelethy, E.S. Bielejec, B.A. Aguirre, Stochastic gain degradation in III–V heterojunction bipolar transistors due to single particle displacement damage. IEEE Trans. Nucl. Sci. 65, 206–210 (2018). https://doi.org/10.1109/TNS.2017.2772960

    Article  ADS  Google Scholar 

  17. A. Barthel, L. Sayre, G. Kusch, R.A. Oliver, L.C. Hirst, Radiation effects in ultra-thin GaAs solar cells. J. Appl. Phys. 132, 184501 (2022). https://doi.org/10.1063/5.0103381/2837859

    Article  ADS  Google Scholar 

  18. D. Ahmad Fauzi, N.K.A. Md Rashid, M.R. Mohamed Zin, N.F. Hasbullah, Neutron radiation effects on the electrical characteristics of InAs/GaAs quantum dot-in-a-well structures. IEEE Trans. Nucl. Sci. 62, 3324–3329 (2015). https://doi.org/10.1109/TNS.2015.2478450

    Article  ADS  Google Scholar 

  19. X. Zhou, M. Gutierrez, C.H. Tan, X. Meng, L.G. Rojas, J.S. Ng, M. Robbins, N. Nelms, B. White, S. Zhang, Proton radiation effect on InAs avalanche photodiodes. Opt. Express 25, 2818–2825 (2017). https://doi.org/10.1364/OE.25.002818

    Article  ADS  Google Scholar 

  20. M. Jiang, H. Xiao, S. Peng, L. Qiao, G. Yang, Z. Liu, X. Zu, First-principles study of point defects in GaAs/AlAs superlattice: the phase stability and the effects on the band structure and carrier mobility. Nanoscale Res. Lett. 13, 1–13 (2018). https://doi.org/10.1186/S11671-018-2719-7/TABLES/5

    Article  Google Scholar 

  21. M. Jiang, H. Xiao, S. Peng, G. Yang, H. Gong, Z. Liu, L. Qiao, X. Zu, Ab initio molecular dynamics simulation of the radiation damage effects of GaAs/AlGaAs superlattice. J. Nucl. Mater. 516, 228–237 (2019). https://doi.org/10.1016/J.JNUCMAT.2019.01.030

    Article  ADS  Google Scholar 

  22. A. Höglund, C.W.M. Castleton, M. Göthelid, B. Johansson, S. Mirbt, Point defects on the (110) surfaces of InP, InAs, and InSb: a comparison with bulk. Phys. Rev. B Condens. Matter Mater. Phys. 74, 075332 (2006). https://doi.org/10.1103/PHYSREVB.74.075332/FIGURES/8/MEDIUM

    Article  ADS  Google Scholar 

  23. S. Krishnamurthy, Z.G. Yu, Theoretical study of native point defects in strained-layer superlattice systems. J. Appl. Phys. 123, 161414 (2018). https://doi.org/10.1063/1.5004176

    Article  ADS  Google Scholar 

  24. Y. Gao, D. Sun, X. Jiang, J. Zhao, Point defects in group III nitrides: a comparative first-principles study. J. Appl. Phys. 125, 215705 (2019). https://doi.org/10.1063/1.5094356

    Article  ADS  Google Scholar 

  25. N. Chen, D. Huang, E.R. Heller, D.A. Cardimona, F. Gao, Atomistic simulation of displacement damage and effective nonionizing energy loss in InAs. Phys. Rev. Mater. 5, 033603 (2021). https://doi.org/10.1103/PHYSREVMATERIALS.5.033603/FIGURES/11/MEDIUM

    Article  Google Scholar 

  26. H.A. Tahini, A. Chroneos, S.T. Murphy, U. Schwingenschlögl, R.W. Grimes, Vacancies and defect levels in III–V semiconductors. J. Appl. Phys. 114, 063517 (2013). https://doi.org/10.1063/1.4818484

    Article  ADS  Google Scholar 

  27. Q. Peng, N. Chen, D. Huang, E.R. Heller, D.A. Cardimona, F. Gao, First-principles assessment of the structure and stability of 15 intrinsic point defects in zinc-blende indium arsenide. Crystals 9, 48 (2019). https://doi.org/10.3390/CRYST9010048

    Article  Google Scholar 

  28. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  29. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  31. M. Yu, S. Yang, C. Wu, N. Marom, Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization. Npj Comput. Mater. 6, 1–6 (2020). https://doi.org/10.1038/s41524-020-00446-9

    Article  Google Scholar 

  32. D. Broberg, B. Medasani, N.E.R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier, PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018). https://doi.org/10.1016/J.CPC.2018.01.004

    Article  ADS  Google Scholar 

  33. C. Freysoldt, J. Neugebauer, C.G. van de Walle, Fully Ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009). https://doi.org/10.1103/PHYSREVLETT.102.016402/FIGURES/3/MEDIUM

    Article  ADS  Google Scholar 

  34. G.K.H. Madsen, J. Carrete, M.J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018). https://doi.org/10.1016/J.CPC.2018.05.010

    Article  ADS  Google Scholar 

  35. J.E. Sanchez, DEVSIM: a TCAD semiconductor device simulator. J. Open Source Softw. 7, 3898 (2022). https://doi.org/10.21105/JOSS.03898

    Article  ADS  Google Scholar 

  36. A. Fonari, C. Sutton, Effective Mass Calculator (2012). https://github.com/afonari/emc

  37. W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th edn. (CRC Press, 2016). https://doi.org/10.1201/9781315380476

  38. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

  39. M. Zhu, Y. Ren, L. Zhou, J. Chen, H. Guo, L. Zhu, B. Chen, L. Chen, X. Lu, X. Zou, Temperature-dependent electrical characteristics of neutron-irradiated GaN Schottky barrier diodes. Microelectron. Reliab. 125, 114345 (2021). https://doi.org/10.1016/J.MICROREL.2021.114345

    Article  Google Scholar 

  40. V.V. Kozlovski, A.A. Lebedev, M.E. Levinshtein, S.L. Rumyantsev, J.W. Palmour, Electrical and noise properties of proton irradiated 4H-SiC Schottky diodes. J. Appl. Phys. 123, 24502 (2018). https://doi.org/10.1063/1.5018043/151961

    Article  Google Scholar 

  41. M. Turowski, T. Bald, A. Raman, A. Fedoseyev, J.H. Warner, C.D. Cress, R.J. Walters, Simulating the radiation response of GaAs solar cells using a defect-based TCAD model. IEEE Trans. Nucl. Sci. 60, 2477–2485 (2013). https://doi.org/10.1109/TNS.2013.2273446

    Article  ADS  Google Scholar 

  42. M.M. Oo, N.K.A. MdRashid, J.A. Karim, M.R.M. Zin, N.F. Hasbullah, Neutron radiation effect on 2N2222 and NTE 123 NPN silicon bipolar junction transistors. IOP Conf. Ser. Mater. Sci. Eng. 53, 012013 (2013). https://doi.org/10.1088/1757-899X/53/1/012013

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nuclear Security Administration under Grant NA000103. In addition, the authors would like to acknowledge allocations of computational resources from the Ohio Supercomputing Center (OSC).

Funding

This work was supported by the Department of Energy National Nuclear Security Administration grant NA000103.

Author information

Authors and Affiliations

Authors

Contributions

LRB: data collection, data analysis, and some writing; AJS: conceptualization, writing, and editing.

Corresponding author

Correspondence to Adib J. Samin.

Ethics declarations

Conflict of interest

The authors have no competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennaman, L.R., Samin, A.J. Insights into the performance of InAs-based devices in extreme environments from multiscale simulations. Appl. Phys. A 129, 480 (2023). https://doi.org/10.1007/s00339-023-06756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06756-1

Keywords

Navigation