Skip to main content
Log in

Aqueous synthesis of CdSeTe-alloyed quantum dots, fabrication of CdSeTe, CdS and CdSe QDs-sensitized solar cells and optimization of the sensitizing, light scattering and passivating layers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, quantum dot-sensitized solar cells (QDSCs) with multilayer photoelectrodes, i.e., the TiO2 nanocrystals/CdSeTe/CdS/CdSe/ZnS, were fabricated and investigated. The CdSeTe nanocrystals (NCs) were easily synthesized in aqueous solution and deposited on nanocrystalline TiO2 scaffold through drop-casting method. The other sensitizing/passivizing films were also prepared by successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods. It was shown that QDSC with TiO2 nanocrystals/CdSeTe/CdS/ZnS photoanode demonstrated an energy conversion efficiency of 2.95%. This efficiency was enhanced about 30% through the addition and optimization of a CdSe QDs film in the photoelectrode. The CdSe-sensitizing film was effectively deposited in just 9 min and ZnS was applied as the normal passivating film. In the next stage, TiO2 hollow spheres (HSs) were prepared with desired dimension via a template scarifying approach to enhance the light travelling path inside the photoelectrode and increase the light harvesting efficiency. The mentioned point resulted in 12% enhancement compared to the HSs-free QDSC. The last improvement was finally performed by optimization of the ZnS passivating layer and showed a 30% improvement in PCE of the final QDSC in comparison with HSs-free CdSeTe/CdS/CdSe-sensitized solar cell. The pioneer cell was compared with the CdSe and HSs-free reference cell which demonstrated a considerable 68% enhancement in photovoltaic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Piven, A.S. Susha, M. Doblinger, A.L. Rogach, J. Phys. Chem. C 112, 15253–15259 (2008)

    Google Scholar 

  2. R. Ross, A. Nozik, J. Appl. Phys. 53, 3813–3818 (1982)

    ADS  Google Scholar 

  3. T.K. Nideep, M. Ramya, M. Kailasnath, The influence of ZnS buffer layer on the size dependent efficiency of CdTe quantum dot sensitized solar cell. J. Super Lattice Microstruct. 130, 175–181 (2019)

    ADS  Google Scholar 

  4. H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. J. Renew. Sustain. Energy Rev. 22, 148–167 (2013)

    Google Scholar 

  5. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Google Scholar 

  6. M. Marandi, E. Rahmani, F.A. Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater 46, 6769–6783 (2017)

    ADS  Google Scholar 

  7. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials assensitizers for quantum dot-sensitized solar cells. J. Renew. Sustain. Energy Rev. 37, 397–407 (2014)

    Google Scholar 

  8. R.H. Sven, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. J. ChemPhysChem 11, 2290–2304 (2010)

    Google Scholar 

  9. M. Gratzel, Photoelectrochemical cells. Nature 414, 338–334 (2001)

    ADS  Google Scholar 

  10. Ch. Cai et al., Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells. J. Power Sources 341, 11–18 (2017)

    ADS  Google Scholar 

  11. Ru. Zhou et al., Tailoring band structure of ternary CdSxSe1x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016)

    Google Scholar 

  12. N.J.L.K. Davis et al., Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259 (2015)

    ADS  Google Scholar 

  13. G. Nair, L.Y. Chang, S.M. Geyer, M.G. Bawendi, Perspective on the prospects of a carrier multiplication nanocrystal solar cell. J. Nano Lett. 2145–2151 (2011)

  14. S. Kumara, M. Nehrab, A. Deepc, D. Kediab, N. Dilbaghia, K.H. Kimd, Quantum-sized nanomaterials for solar cell applications. J. Renew. Sustain. Energy Rev. 73, 821–839 (2017)

    Google Scholar 

  15. X. Du, X. He, L. Zhao, H. Chen, W. Li, W. Fang, W. Zhang, J. Wang, H. Chen, TiO2 hierarchical porous film constructed by ultrastable foams as photoanode for quantum dot-sensitized solar cells. J. Power Sources 332, 1–7 (2016)

    ADS  Google Scholar 

  16. D. Wu, X. Shi, H. Dong, F. Zhu, K. Jiang, D. Xu, X. Ai, J. Zhang, The effect of photoanode structure on the performances of quantum-dot-sensitized solar cells: a case study of the anatase TiO2 nanocrystals and polydisperse mesoporous spheres hybrid photoanodes. J. Mater. Chem. A 2, 16276–16284 (2014)

    Google Scholar 

  17. J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, G. Cao, Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 1, 6770–6775 (2013)

    Google Scholar 

  18. J. Jie, Z. Zheng-Ji, Z. Wen-Hui, W. Xin, CdS and PbS quantum dots co sensitizedTiO2 nano rod arrays with improved performance for solar cells application. J. Mater. Sci. Semicond. Process 16, 435–440 (2013)

    Google Scholar 

  19. M. Marandi, F.S. Mirahmadi, Aqueous synthesis of CdTe–CdS core shell nanocrystals and effect of shellformation process on the efficiency of quantum dot sensitized solar cells. J. Sol. Energy 188, 35–44 (2019)

    ADS  Google Scholar 

  20. S. Lee et al., High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer. New J. Chem. 41, 1914–1917 (2017)

    Google Scholar 

  21. L. Wonjoo, L. Jungwoo, K.M. Sun, P.K. Taehee, Y. Whikun, H. Sung-Hwan, Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells. J. Mater. Sci. Eng. 156, 48 (2009)

    Google Scholar 

  22. M. Marandi, S. Bayat, Facile fabrication of hyper-branched TiO2 hollow spheres for high efficiency dye-sensitized solar cells. J. Solar Energy 174, 888–896 (2018)

    ADS  Google Scholar 

  23. W. Zhang, X. Zeng, H. Wang, R. Fang, Y. Xu, Y. Zhang, W. Chen, High-yield synthesis of “oriented attachment” TiO2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells. J. Chen. RSC Adv. 6, 33713–33722 (2016)

    Google Scholar 

  24. Q. Shen, J. Xue, J. Liu, X. Liu, H. Jia, B. Xu, Enhancing efficiency of CdS/TiO2 nanorod arrays solar cell through improving the hydrophilicity of TiO2 nanorodsurface. J. Sol. Energy Mater. Sol. Cells 136, 206 (2015)

    Google Scholar 

  25. M. Marandi, S. Bayat, M. NaeimiSaniSabet, Hydrothermal growth of a composite TiO2 hollow spheres/TiO2 nanorods powder and its application in high performance dye sensitized solar cells. J. Elechem. 11, 023 (2018)

    Google Scholar 

  26. Z. Zhengji, Y. Shengjie, F. Junqi, H. Zeliang, Z. Wenhui, D. Zuliang, CuInS2 quantum dot-sensitized TiO2 nanorod array photoelecrodes: synthesis and performance optimization. J. Nano Scale Res. Lett. 7, 652 (2012)

    ADS  Google Scholar 

  27. T. Auttasit, L. Ming-Way, W. Gou-Jen, Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting. J. Power Sources 196, 6603–6608 (2011)

    Google Scholar 

  28. Z. Chen, W. Peng, K. Zhang, J. Zhang, X. Yang, Y. Numata, L. Han, Band alignment by ternary crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized solar cells. J. Mater. Chem. A 2, 7004–7014 (2014)

    Google Scholar 

  29. S. Chand, A. Dahshan, N. Thakur, V. Sharma, P. Sharma, Alloyed Ag2SexS1x quantum dots with red to NIR shift: the bandgap tuning with dopant content for energy harvesting applications. J. Infrared 105, 103162 (2019)

    Google Scholar 

  30. D. Liua, J. Liua, J. Liua, S. Liua, C. Wanga, Z. Gea, X. Haoa, N. Duc, H. Xia, The photovoltaic performance of CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides. J. Phys. Low-Dimens. Syst. Nanostruct. 115, 113669 (2020)

    Google Scholar 

  31. P. Ma, Y. Fang, H. Cheng, Y. Wang, X. Zhou, S. Fang, Y. Lin, NH2-rich silica nanoparticle as a universal additive in electrolytes for high-efficiency quasi-solid-state dye-sensitized solar cells and quantum dot sensitized solar cells. J. Electrochim. Acta 262, 197 (2018)

    Google Scholar 

  32. P. Naresh Kumar, A. Kolay, S. Krishna Kumar, P.K. Patra, A.N. Aphale, A. Kumar Srivastava, M. Deepa, The counter electrode impact on quantum dot solar cell efficiencies. (2016)

  33. G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, X. Zhong, Poly(vinyl pyrrolidone) a superior and general additive in polysulfide electrolyte for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A C6TA04027F (2016)

  34. U. Ahmed, M. Alizadeh, N. Abd Rahim, S. Shahabuddin, M.S. Ahmed, A.K. Pandey, A comprehensive review on counter electrodes for dye sensitized solar cells: a special focus on Pt-TCO free counter electrodes. J. Sol. Energy 174, 1097–1125 (2018)

    ADS  Google Scholar 

  35. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, A. Zaban, PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J. Phys. Chem. 115, 6162–6166 (2011)

    Google Scholar 

  36. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xuea, X. Zhong, Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. J. Mater. Chem. A5, 14124 (2017)

    Google Scholar 

  37. K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J. Phys. Chem. C 117, 5584–5592 (2013)

    Google Scholar 

  38. L. Mu, C. Liu, J. Jia, X. Zhou, Y. Lin, Dual post-treatment: a strategy towards high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A 1, 8353–8357 (2013)

    Google Scholar 

  39. Y. Lin, Yu. Lin, Y. Meng, Y. Wang, CdS quantum dots sensitized ZnO spheres via ZnS overlayer to improve efficiency for quantum dots sensitized solar cells. J. Ceram. Int. 40, 8157–8163 (2014)

    Google Scholar 

  40. M. Marandi, M. Nazari, Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. J. Solar Energy. 216, 48–60 (2021)

    ADS  Google Scholar 

  41. M. Abdul Basit, N. Ali, Superior ZnS deposition for augmenting the photostability and photovoltaic performance of PbS quantum-dot sensitized solar cells. Chem. Phys. Lett. 731, 136572 (2019)

    Google Scholar 

  42. M. Marandi, S. HosseinAbadi, Aqueous synthesis of colloidal CdSexTe1x–CdS core-shell nanocrystals and effect of shell formation parameters on the efficiency of corresponding quantum dot sensitized solar cells. J. Solar Energy. 209, 387–399 (2020)

    ADS  Google Scholar 

  43. R.E. Bailey, S.M. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125(23), 7100–7106 (2003)

    Google Scholar 

  44. J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li, Q. Shen, X. Zhong, CdSeTe/CdS type-I core/shell quantum dot sensitized solar cells with efficiency over 9%. J. Phys. Chem. 119, 28800–28808 (2015)

    Google Scholar 

  45. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. J. Chem. Rev 110, 6664–6688 (2010)

    Google Scholar 

  46. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third generation photovoltaic solar cells. J. Chem. Rev 11, 6873–6890 (2010)

    Google Scholar 

  47. M. Marandi, N. Torabi, F. Ahangarani Farahani, Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. J. Solar Energy 207, 32–39 (2020)

    ADS  Google Scholar 

  48. C.V. Gopi, V.M. Venkata-Haritha, M. Kim, S.-K., H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. J. Nanoscale 7: 12552–12563 (2015).

  49. M.S. Fuente, R.S. Sanchez, V. Gonzalez-Pedro, P.P. Boix, S.G. Mhaisalkar, M.E. Rincon, Effect of organic and inorganic passivation in138 quantum-dot-sensitized solar cells. J. Phys. Chem. Lett. 4, 1519–1525 (2013)

    Google Scholar 

  50. E. Robert, Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125(23), 7100–7106 (2003)

    Google Scholar 

  51. H. Wei, G. Wan, Y. Luo, D. Li Qingbo Meng, Investigation on interfacial charge transfer process in CdSexTe1−x alloyed quantum dot sensitized solar cells. J. Electr. Acta 173, 156–163 (2015)

    Google Scholar 

  52. R. Herrera, R. Velázquez, A. Meda, P. Delgado, T. Guízar, Taboad, P. Luis, NIR-emitting alloyed CdTeSe QDs and organic dye assemblies: a nontoxic, stable, and efficient FRET system. J. Nanomater. 4, E231 (2018)

    Google Scholar 

  53. J. Albero, J.N. Clifford, E. Palomares, Quantum dot based molecular solar cells. J. Coord. Chem. Rev 263, 53–64 (2014)

    Google Scholar 

  54. L.E. Brus, Electron—electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    ADS  Google Scholar 

  55. Zh. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, Near infrared absorption of CdSexTe1x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. J. Am. Chem. Soc. Nano 6, 5215–5222 (2013)

    Google Scholar 

  56. D. Esparza, E. Del La Rosa, Enhancement of efficiency in quantum dot sensitized solar cells based on CdS/CdSe/CdSeTe heterostructure by improving the light absorbtion in the VIS-NIR region. J. Electrochimica Acta 247, 899–909 (2017)

    Google Scholar 

  57. Z. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao et al., High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 136, 9203–9210 (2014)

    Google Scholar 

  58. X. Zhang, J. Liu, E.M.J. Johansson, Efficient charge-carrier extraction from Ag2S quantum dots prepared by the SILAR method for utilization of multiple exciton generation. Nanoscale 7, 1454–1462 (2014)

    ADS  Google Scholar 

  59. S.-H. Weia, S.B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Aip 87, 1304 (2000)

    Google Scholar 

  60. M. Ostadebrahimi, H. Dehghani, ZnS/CdSe0.2S0.8/ZnSSe heterostructure as a novel and efficient quantum dot sensitized solar cells. J. Appl. Surf. Sci. 545, 148958 (2021)

    Google Scholar 

  61. G. Liu, Z.-B. Ling, Y. Wang, H. Zhao, Near-infrared CdSexTe1x/CdS “giant” quantum dots for efficient photoelectrochemical hydrogen generation. J. Hydrog. Energy 43, 22064–22074 (2018)

    Google Scholar 

  62. S. Majumder, P.K. Baviskar, B.R. Sankapal, Light-induced electrochemical performance of 3D-CdS nanonetwork: effect of annealing. Electrochim. Acta. 222, 100–107 (2016)

    Google Scholar 

  63. P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Mathematisch-Physikalische 2, 98–100 (1918)

    Google Scholar 

  64. A.J. Longford, Wilson Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NS, SHA, and MM. The first draft of the manuscript was written by Dr. MM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Marandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marandi, M., Shahidi, N. & Abadi, S.H. Aqueous synthesis of CdSeTe-alloyed quantum dots, fabrication of CdSeTe, CdS and CdSe QDs-sensitized solar cells and optimization of the sensitizing, light scattering and passivating layers. Appl. Phys. A 129, 517 (2023). https://doi.org/10.1007/s00339-023-06752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06752-5

Keywords

Navigation